Skip to main content

New inequalities for hyperbolic functions and their applications

Abstract

In this paper, we obtain some new inequalities in the exponential form for the whole of the triples about the four functions {1,(sinht)/t,exp(tcotht−1),cosht}. Then we generalize some well-known inequalities for the arithmetic, geometric, logarithmic, and identric means to obtain analogous inequalities for their p th powers, where p>0.

MSC: 26E60, 26D07.

1 Introduction

Let sinht, cosht, and cotht be the hyperbolic sine, hyperbolic cosine, and hyperbolic cotangent, respectively. It is well known that (see [1–6])

1< sinh t t < e t coth t − 1 <cosht
(1.1)

holds for all t≠0.

In the recent paper [7], we have established the following Cusa-type inequalities of exponential type for the triple {1,(sinht)/t,cosht} described as follows.

Theorem 1.1 (Cusa-type inequalities [[7], Part (i) of Theorem 1.1])

Let p≥4/5, and t≠0. Then the double inequality

(1−λ)+λ ( cosh t ) p < ( sinh t t ) p <(1−η)+η ( cosh t ) p
(1.2)

holds if and only if η≥1/3 and λ≤0.

On the other hand, the author of this paper [8] obtains the following inequalities of exponential type for the triple {1,exp(tcotht−1),cosht}.

Theorem 1.2 ([[8], Theorem 2])

Let p>0, and t≠0. Then

(1) if 0<p≤6/5, the double inequality

α ( cosh t ) p +(1−α)< e p ( t coth t − 1 ) <β ( cosh t ) p +(1−β)
(1.3)

holds if and only if α≤2/3 and β≥ ( 2 / e ) p ;

(2) if p≥2, the double inequality

α ( cosh t ) p +(1−α)< e p ( t coth t − 1 ) <β ( cosh t ) p +(1−β)
(1.4)

holds if and only if α≤ ( 2 / e ) p and β≥2/3.

Next, we do the work for each of the triples {(sinht)/t,exp(tcotht−1),cosht} and {1,(sinht)/t,exp(tcotht−1)}, and obtain the following two new results.

Theorem 1.3 Let 0<p≤8/5, and t≠0. Then

α ( cosh t ) p +(1−α) ( sinh t t ) p < e p ( t coth t − 1 ) <β ( cosh t ) p +(1−β) ( sinh t t ) p
(1.5)

holds if and only if α≤1/2 and β≥ ( 2 / e ) p .

Theorem 1.4 Let p≥286/693, and t≠0. Then

α+(1−α) e p ( t coth t − 1 ) < ( sinh t t ) p <β+(1−β) e p ( t coth t − 1 )
(1.6)

holds if and only if β≤1/2 and α≥1.

In this paper, we shall give the elementary proofs of Theorem 1.3 and Theorem 1.4. In the last section, we apply Theorems 1.1-1.4 to obtain some new results for four classical means.

2 Lemmas

Lemma 2.1 ([9–11])

Let f,g:[a,b]→R be two continuous functions which are differentiable on (a,b). Further, let g ′ ≠0 on (a,b). If f ′ / g ′ is increasing (or decreasing) on (a,b), then the functions (f(x)−f( b − ))/(g(x)−g( b − )) and (f(x)−f( a + ))/(g(x)−g( a + )) are also increasing (or decreasing) on (a,b).

Lemma 2.2 Let t∈(0,+∞). Then the inequality

D(t)≜t sinh 5 t+2t sinh 3 t+ t 4 cosht− sinh 4 tcosht− t 3 sinh 3 t−2 t 3 sinht>0

holds.

Proof Using the power series expansions of the functions sinh5t, sinh3t, cosht, sinh 4 tcosht, and sinht, we have

D ( t ) = 1 16 t ( sinh 5 t − 5 sinh 3 t + 10 sinh t ) + 1 2 t ( sinh 3 t − 3 sinh t ) + t 4 cosh t − 1 16 ( cosh 5 t − 3 cosh 3 t + 2 cosh t ) − 1 4 t 3 ( sinh 3 t − 3 sinh t ) − 2 t 3 sinh t = 1 16 ∑ n = 0 ∞ 5 2 n + 1 − 5 ⋅ 3 2 n + 1 + 10 ( 2 n + 2 ) ! t 2 n + 1 + 1 2 ∑ n = 0 ∞ 3 2 n + 1 − 3 ( 2 n + 1 ) ! t 2 n + 2 + ∑ n = 0 ∞ 1 ( 2 n ) ! t 2 n + 4 − 1 16 ∑ n = 0 ∞ 5 2 n − 3 ⋅ 3 2 n + 2 ( 2 n ) ! t 2 n − 1 4 ∑ n = 0 ∞ 3 2 n + 1 − 3 ( 2 n + 1 ) ! t 2 n + 4 − 2 ∑ n = 0 ∞ 1 ( 2 n + 1 ) ! t 2 n + 4 = 1 16 ∑ n = 3 ∞ l n ( 2 n + 4 ) ! t 2 n + 4 ,

where

l n = ( 2 n + 4 ) ( 5 2 n + 3 − 5 ⋅ 3 2 n + 3 + 10 ) + 8 ( 2 n + 4 ) ( 3 2 n + 3 − 3 ) + 16 ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) ( 2 n + 1 ) − ( 5 2 n + 4 − 3 ⋅ 3 2 n + 4 + 2 ) − 4 ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) ( 3 2 n + 1 − 3 ) − 32 ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) = ( 250 n − 125 ) 25 n + ( 279 − 462 n − 432 n 2 − 96 n 3 ) 9 n + 256 n 4 + 1 , 120 n 3 + 1 , 520 n 2 + 532 n − 154 , n = 3 , 4 , … .

Using a basic differential method, we can easily prove

f ( x ) ≜ ( 250 x − 125 ) 25 x + ( 279 − 462 x − 432 x 2 − 96 x 3 ) 9 x + 256 x 4 + 1 , 120 x 3 + 1 , 520 x 2 + 532 x − 154 > 0

on [3,∞). This leads to l n >0 for n=3,4,… , and D(t)>0. So, the proof of Lemma 2.2 is complete. □

3 Proof of Theorem 1.3

Let

F(t)≡ ( t sinh t e t coth t − 1 ) p − 1 ( t coth t ) p − 1 = f 1 ( t ) − f 1 ( 0 + ) g 1 ( t ) − g 1 ( 0 + ) ,

where f 1 (t)= ( t sinh t e t coth t − 1 ) p and g 1 (t)= ( t coth t ) p . Then

k 1 (t)≜ f 1 ′ ( t ) g 1 ′ ( t ) = e p ( t coth t − 1 ) ( cosh t ) p − 1 ⋅ sinh 2 t − t 2 sinh t ( sinh t cosh t − t ) .

We compute

k 1 ′ (t)= e p ( t coth t − 1 ) ( cosh t ) p ⋅ u 1 ( t ) ( sinh t ) 3 ( sinh t cosh t − t ) 2 ,

where

u 1 ( t ) = 2 t 2 sinh 4 t cosh t + sinh 4 t cosh t − 4 t sinh 5 t − 3 t sinh 3 t + 3 t 2 sinh 2 t cosh t − t 3 sinh t − p ( t sinh 5 t + 2 t sinh 3 t + t 4 cosh t − sinh 4 t cosh t − t 3 sinh 3 t − 2 t 3 sinh t ) = 2 t 2 sinh 4 t cosh t + sinh 4 t cosh t − 4 t sinh 5 t − 3 t sinh 3 t + 3 t 2 sinh 2 t cosh t − t 3 sinh t − p D ( t ) .

If 0<p≤8/5, by Lemma 2.2 we have

5 u 1 ( t ) ≥ 10 t 2 sinh 4 t cosh t + 13 sinh 4 t cosh t − 28 t sinh 5 t − 46 t sinh 3 t + 30 t 2 sinh 2 t cosh t + 6 t 3 sinh t − 8 t 4 cosh t + 8 t 3 sinh 3 t = ∑ n = 3 ∞ h n 16 ( 2 n + 4 ) ! t 2 n + 4 ,

where

h n = 10 ( 2 n + 4 ) ( 2 n + 3 ) ( 5 2 n + 2 − 3 ⋅ 3 2 n + 2 + 2 ) + 13 ( 5 2 n + 4 − 3 ⋅ 3 2 n + 4 + 2 ) − 28 ( 2 n + 4 ) ( 5 2 n + 3 − 5 ⋅ 3 2 n + 3 + 10 ) − 184 ( 2 n + 4 ) ( 3 2 n + 3 − 3 ) + 120 ( 2 n + 4 ) ( 2 n + 3 ) ( 3 2 n + 2 − 1 ) + 96 ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) ( 2 n + 1 ) 2 n − 128 ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) ( 2 n + 1 ) + 96 ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) ( 3 2 n − 1 ) = ( 1 , 000 n 2 − 3 , 500 n − 2 , 875 ) 25 n + ( 768 n 3 + 6 , 696 n 2 + 13 , 956 n + 4 , 113 ) 9 n + ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) ( 2 n + 1 ) ( 192 n − 128 ) − 96 ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) − 100 ( 2 n + 4 ) ( 2 n + 3 ) + 272 ( 2 n + 4 ) + 26 > 0

for n=3,4,… .

We have u 1 (t)>0 for 0<p≤8/5. So, k 1 ′ (t)>0 for t>0, and f 1 ′ (t)/ g 1 ′ (t)= k 1 (t) is increasing on (0,+∞). Hence, F(t) is increasing on (0,+∞) by Lemma 2.1. At the same time, lim t → 0 + F(t)=1/2 and lim t → + ∞ F(t)= ( 2 / e ) p . So, the proof of Theorem 1.3 is complete.

4 Proof of Theorem 1.4

Let

S(t)≡ ( sinh t t e 1 − t coth t ) p − 1 e p ( 1 − t coth t ) − 1 = f 2 ( t ) − f 2 ( 0 + ) g 2 ( t ) − g 2 ( 0 + ) ,

where f 2 (t)= ( sinh t t e 1 − t coth t ) p and g 2 (t)= e p ( 1 − t coth t ) . Then

k 2 (t)≜ f 2 ′ ( t ) g 2 ′ ( t ) = ( sinh t t ) p − 1 ( sinh t ) 3 − t 2 sinh t t 2 ( sinh t cosh t − t ) ,

and

k 2 ′ (t)= ( sinh t t ) p − 2 u 2 ( t ) t 4 ( sinh t cosh t − t ) 2 ,

where

where e n =1−( d n / c n ) and

Let

Then

e n =1− d n c n = j ( n ) i ( n ) .

Let Δ(n)=286i(n)−693j(n). Then

Δ ( n ) = ( 741 , 313 n − 5 , 759 , 424 ) 36 n + 16 n [ 2 , 275 , 328 ( 2 n + 5 ) + 4 , 009 , 984 + 70 , 400 ( 2 n + 5 ) ( 2 n + 4 ) ( 2 n + 3 ) − 532 , 224 ( 2 n + 5 ) ( 2 n + 4 ) ] + 4 n [ 9 , 152 ( 2 n + 5 ) ( 2 n + 4 ) ( 2 n + 3 ) ( 2 n + 2 ) − 62 , 656 ( 2 n + 5 ) ( 2 n + 4 ) ( 2 n + 3 ) + 133 , 056 ( 2 n + 5 ) ( 2 n + 4 ) − 610 , 016 ( 2 n + 5 ) − 156 , 640 ] .

First, we check that Δ(n)>0 for n=3,4,5,6,7; second, we can easily obtain that Δ(n)>0 for n≥8. So, we have that Δ(n)>0 for n=3,4,… .

So, we have u 2 (t)>0 for p≥286/693. So, k 2 ′ (t)>0 for t>0, and f 2 ′ (t)/ g 2 ′ (t)= k 2 (t) is increasing on (0,+∞). Hence, S(t) is increasing on (0,+∞) by Lemma 2.1 when p≥286/693. At the same time, lim t → 0 + S(t)=1/2 and lim t → + ∞ S(t)=1. So, the proof of Theorem 1.4 is complete.

5 Applications of theorems

In this section, we assume that x and y are two different positive numbers. Let A(x,y), G(x,y), L(x,y), and I(x,y) be the arithmetic, geometric, logarithmic, and identric means, respectively. Without loss of generality, we set 0<x<y. By the transformation t=(log(y/x))/2, we can compute and obtain

where t>0.

Now, the four results in Section 1 are equivalent to the following ones for four classical means.

Theorem 5.1 Let p≥4/5, and x and y be positive real numbers with x≠y. Then

α A p (x,y)+(1−α) G p (x,y)< L p (x,y)<β A p (x,y)+(1−β) G p (x,y)
(5.1)

holds if and only if α≤0 and β≥1/3.

Theorem 5.1 can deduce the following one, which is from Zhu [8].

Corollary 5.2 ([[8], Theorem 1])

Let p≥1, and x and y be positive real numbers with x≠y. Then

α A p (x,y)+(1−α) G p (x,y)< L p (x,y)<β A p (x,y)+(1−β) G p (x,y)
(5.2)

holds if and only if α≤0 and β≥1/3.

When letting p=1 in Theorem 5.1, one can obtain the result (see [12–14], [[15], Theorem 1]).

Corollary 5.3 Let x and y be positive real numbers with x≠y. Then

αA(x,y)+(1−α)G(x,y)<L(x,y)<βA(x,y)+(1−β)G(x,y)
(5.3)

holds if and only if α≤0 and β≥1/3.

When letting β=1/3 in the right-hand inequality of (5.3), one can obtain the well-known inequality by Carlson [16]

L(x,y)< 1 3 A(x,y)+ 2 3 G(x,y).
(5.4)

Theorem 5.4 Let p>0. Then

(1) if 0<p≤6/5, the double inequality

α A p (x,y)+(1−α) G p (x,y)< I p (x,y)<β A p (x,y)+(1−β) G p (x,y)
(5.5)

holds if and only if α≤2/3 and β≥ ( 2 / e ) p ;

(2) if p≥2, the double inequality

α A p (x,y)+(1−α) G p (x,y)< I p (x,y)<β A p (x,y)+(1−β) G p (x,y)
(5.6)

holds if and only if α≤ ( 2 / e ) p and β≥2/3.

The part (2) of Theorem 5.4 is a result of Trif [17].

When letting p=2 and β=2/3 in the right-hand inequality of (5.6), one can obtain the following result, which is from Sándor and Trif [18].

I 2 (x,y)< 2 3 A 2 (x,y)+ 1 3 G 2 (x,y).
(5.7)

When letting p=1 in the double inequality (5.5), one can obtain the following result (see [12], [[15], Theorem 2]).

Corollary 5.5 Let x and y be positive real numbers with x≠y. Then

αA(x,y)+(1−α)G(x,y)<I(x,y)<βA(x,y)+(1−β)G(x,y)
(5.8)

holds if and only if α≤2/3 and β≥2/e.

When letting α=2/3 in the left-hand inequality in (5.8), one can obtain the following result, which is from Sándor [19].

2 3 A(x,y)+ 1 3 G(x,y)<I(x,y).
(5.9)

Theorem 5.6 Let 0<p≤8/5, x and y be positive real numbers with x≠y. Then

α A p (x,y)+(1−α) L p (x,y)< I p (x,y)<β A p (x,y)+(1−β) L p (x,y)
(5.10)

holds if and only if α≤1/2 and β≥ ( 2 / e ) p .

Theorem 5.6 can deduce the following result (see Zhu [15]).

Corollary 5.7 ([[15], Theorem 3])

Let x and y be positive real numbers with x≠y. Then

αA(x,y)+(1−α)L(x,y)<I(x,y)<βA(x,y)+(1−β)L(x,y)
(5.11)

holds if and only if α≤1/2 and β≥2/e.

When letting α=1/2 in the left-hand inequality of (5.11), one can obtain the following result, which is from Sándor [4, 19].

I(x,y)> A ( x , y ) + L ( x , y ) 2 .
(5.12)

Finally, we give the bounds for L p (x,y) in terms of G p (x,y) and I p (x,y), and obtain the following new result.

Theorem 5.8 Let x and y be positive real numbers with x≠y, and p≥286/693. Then

α G p (x,y)+(1−α) I p (x,y)< L p (x,y)<β G p (x,y)+(1−β) I p (x,y)
(5.13)

holds if and only if β≤1/2 and α≥1.

Theorem 5.8 can deduce a result of Zhu [15]:

Corollary 5.9 ([[15], Theorem 4])

Let x and y be positive real numbers with x≠y. Then

αG(x,y)+(1−α)I(x,y)<L(x,y)<βG(x,y)+(1−β)I(x,y)
(5.14)

holds if and only if β≤1/2 and α≥1.

Obviously, the right-hand side of (5.14) is an extension of the following inequality:

L(x,y)< 1 2 ( G ( x , y ) + I ( x , y ) ) ,
(5.15)

which was given by Alzer [5].

References

  1. Mitrinović DS: Analytic Inequalities. Springer, Berlin; 1970.

    Book  MATH  Google Scholar 

  2. Ostle B, Terwilliger HL: A comparison of two means. Proc. Mont. Acad. Sci. 1957, 17: 69–70.

    Google Scholar 

  3. Leach EB, Sholander MC: Extended mean values. J. Math. Anal. Appl. 1983, 92: 207–223. 10.1016/0022-247X(83)90280-9

    Article  MathSciNet  MATH  Google Scholar 

  4. Sándor J: On the identric and logarithmic means. Aequ. Math. 1990, 40: 261–270. 10.1007/BF02112299

    Article  MATH  MathSciNet  Google Scholar 

  5. Alzer H: Ungleichungen für Mittelwerte. Arch. Math. 1986, 47: 422–426. 10.1007/BF01189983

    Article  MathSciNet  MATH  Google Scholar 

  6. Stolarsky KB: The power mean and generalized logarithmic means. Am. Math. Mon. 1980, 87: 545–548. 10.2307/2321420

    Article  MathSciNet  MATH  Google Scholar 

  7. Zhu L: Inequalities for hyperbolic functions and their applications. J. Inequal. Appl. 2010., 2010: Article ID 130821

    Google Scholar 

  8. Zhu L: Some new inequalities for means in two variables. Math. Inequal. Appl. 2008, 11(3):443–448.

    MathSciNet  MATH  Google Scholar 

  9. Vamanamurthy K, Vuorinen M: Inequalities for means. J. Math. Anal. Appl. 1994, 183: 155–166. 10.1006/jmaa.1994.1137

    Article  MathSciNet  MATH  Google Scholar 

  10. Anderson GD, Qiu S-L, Vamanamurthy MK, Vuorinen M: Generalized elliptic integral and modular equations. Pac. J. Math. 2000, 192: 1–37. 10.2140/pjm.2000.192.1

    Article  MathSciNet  Google Scholar 

  11. Pinelis I: L’Hospital type results for monotonicity, with applications. J. Inequal. Pure Appl. Math. 2002., 3: Article ID 5 (electronic)

    Google Scholar 

  12. Alzer H, Qiu S-L: Inequalities for means in two variables. Arch. Math. 2003, 80: 201–215. 10.1007/s00013-003-0456-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Zhu L, Wu JH: The weighted arithmetic and geometric means of the arithmetic mean and the geometric mean. J. Math. Technol. 1998, 14: 150–154. (in Chinese)

    Google Scholar 

  14. Zhu L: From chains for mean value inequalities to Mitrinovic’s problem II. Int. J. Math. Educ. Sci. Technol. 2005, 36: 118–125. 10.1080/00207390412331314971

    Article  Google Scholar 

  15. Zhu L: New inequalities for means in two variables. Math. Inequal. Appl. 2008, 11(2):229–235.

    MathSciNet  MATH  Google Scholar 

  16. Carlson BC: The logarithmic mean. Am. Math. Mon. 1972, 79: 615–618. 10.2307/2317088

    Article  MATH  MathSciNet  Google Scholar 

  17. Trif T: Note on certain inequalities for means in two variables. J. Inequal. Pure Appl. Math. 2005., 6: Article ID 43 (electronic)

    Google Scholar 

  18. Sándor J, Trif T: Some new inequalities for means of two arguments. Int. J. Math. Math. Sci. 2001, 25: 525–532. 10.1155/S0161171201003064

    Article  MathSciNet  MATH  Google Scholar 

  19. Sándor J: A note on some inequalities for means. Arch. Math. 1991, 56: 471–473. 10.1007/BF01200091

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Zhu.

Additional information

Competing interests

The author declares that they have no competing interests.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Zhu, L. New inequalities for hyperbolic functions and their applications. J Inequal Appl 2012, 303 (2012). https://doi.org/10.1186/1029-242X-2012-303

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-303

Keywords