# Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex

- Ali Barani
^{1}Email author, - Amir G Ghazanfari
^{1}and - Sever S Dragomir
^{2, 3}

**2012**:247

https://doi.org/10.1186/1029-242X-2012-247

© Barani et al.; licensee Springer 2012

**Received: **6 August 2011

**Accepted: **28 May 2012

**Published: **29 October 2012

## Abstract

## Keywords

## 1 Introduction and preliminary

Both inequalities hold in the reversed direction if *f* is concave. We note that Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. Hadamard’s inequality for convex functions has received renewed attention in recent years and a remarkable variety of refinements and generalizations have been found (see, for example, [1–4]).

The classical Hermite-Hadamard inequality provides estimates of the mean value of a continuous convex function $f:[a,b]\to \mathbb{R}$.

to prove the following results.

**Theorem 1.1**

*Assume*$a,b\in \mathbb{R}$

*with*$a<b$

*and*$f:[a,b]\to \mathbb{R}$

*is a differentiable function on*$(a,b)$.

*If*$|{f}^{\prime}|$

*is convex on*$[a,b]$

*then the following inequality holds true*

**Theorem 1.2**

*Assume*$a,b\in \mathbb{R}$

*with*$a<b$

*and*$f:[a,b]\to \mathbb{R}$

*is a differentiable function on*$(a,b)$.

*Assume*$p\in \mathbb{R}$

*with*$p>1$.

*If*${|{f}^{\prime}|}^{\frac{p}{p-1}}$

*is convex on*$[a,b]$

*then the following inequality holds true*

Ion [6] presented some estimates of the right-hand side of a Hermite-Hadamard-type inequality in which some quasi-convex functions are involved.

In recent years, several extensions and generalizations have been considered for classical convexity. A significant generalization of convex functions is that of invex functions introduced by Hanson [7]. Weir and Mond [8] introduced the concept of preinvex functions and applied it to the establishment of the sufficient optimality conditions and duality in nonlinear programming. Aslam Noor [9, 10] introduced the Hermite-Hadamard inequality for preinvex and log-preinvex functions.

In this article, we generalize the results in [6] for functions whose first derivatives absolute values are preinvex. Also some results for functions whose second derivatives absolute values are preinvex will be given. Now, we recall some notions in invexity analysis which will be used throughout the article (see [11, 12] and references therein).

**Definition 1.1**A set is said to be invex with respect to the map , if for every $x,y\in S$ and $t\in [0,1]$,

*η*-path ${P}_{xv}$ joining the points

*x*and $v:=x+\eta (y,x)$ is defined as follows

**Definition 1.2**Let be an invex set with respect to . Then, the function is said to be preinvex with respect to

*η*, if for every $x,y\in S$ and $t\in [0,1]$,

Every convex function is a preinvex with respect to the map $\eta (x,y)=x-y$ but the converse does not holds. For properties and applications of preinvex functions, see [12, 13] and references therein.

The organization of the article is as follows: In Section 2, some generalizations of Hermite-Hadamard-type inequality for first-order differentiable functions are given. Section 3 is devoted to a generalization to several variable preinvex functions. Hermite-Hadamard-type inequality for second-order differentiable functions are studied in Section 23.

## 2 First-order differentiable functions

In this section, we introduce some generalizations of Hermite-Hadamard-type inequality for functions whose first derivatives absolute values are preinvex. We begin with the following lemma which is a generalization of Lemma 2.1 in [5] to invex setting.

**Lemma 2.1**

*Let*

*be an open invex subset with respect to*

*and*$a,b\in A$

*with*$\theta (a,b)\ne 0$.

*Suppose that*

*is a differentiable function*.

*If*${f}^{\mathrm{\prime}}$

*is integrable on the*

*θ*-

*path*${P}_{bc},c=b+\theta (a,b)$

*then*,

*the following equality holds*

*Proof*Suppose that $a,b\in A$. Since

*A*is an invex set with respect to

*θ*, for every $t\in [0,1]$ we have $b+t\theta (a,b)\in A$. Integrating by parts implies that

which completes the proof. □

**Theorem 2.1**

*Let*

*be an open invex subset with respect to*.

*Suppose that*

*is a differentiable function*.

*If*$|{f}^{\mathrm{\prime}}|$

*is preinvex on*

*A*

*then*,

*for every*$a,b\in A$

*with*$\theta (a,b)\ne 0$

*the following inequality holds*

*Proof*Suppose that $a,b\in A$. Since

*A*is an invex set with respect to

*θ*, for every $t\in [0,1]$ we have $b+t\theta (a,b)\in A$. By preinvexity of $|{f}^{\mathrm{\prime}}|$ and Lemma 2.1 we get

□

Now, we give an example of an invex set with respect to an *θ* which is satisfies the conditions of Theorem 2.1.

**Example 2.1**Suppose that $K:=(-3,-1)\cup (1,4)$ and the function is defined by

*K*is an open invex set with respect to

*θ*. Suppose that $a\in (-3,-1)$ and $b\in (1,4)$, $b\ne 3$ hence, $\theta (a,b)=3-b\ne 0$. Now,

where $c=b+\theta (a,b)$.

Another similar result is embodied in the following theorem.

**Theorem 2.2**

*Let*

*be an open invex subset with respect to*.

*Suppose that*

*is a differentiable function*.

*Assume that*

*with*$p>1$.

*If*$|{f}^{\mathrm{\prime}}{|}^{p/p-1}$

*is preinvex on*

*A*

*then*,

*for every*$a,b\in A$

*with*$\theta (a,b)\ne 0$

*the following inequality holds*

*Proof*Suppose that $a,b\in A$. By assumption, Hölder’s inequality and the proof of Theorem 4.1 we have

where $q:=p/(p-1)$. □

Note that if $A=[a,b]$ and $\theta (x,y)=x-y$ for every $x,y\in A$ then, we can deduce Theorems 1.1 and 1.2, from Theorems 2.1 and 2.2, respectively.

## 3 An extension to several variables functions

The aim of this section is to extend the Proposition 1 in [6] and Theorem 2.2 to functions of several variables defined on invex subsets of .

Note that, in Example 2.1, *θ* satisfies the condition *C*.

*C*we have

see [12] for details.

**Proposition 3.1**

*Let*

*be an invex set with respect to*

*and*

*is a function*.

*Suppose that*

*η*

*satisfies condition*

*C*

*on*

*S*.

*Then*,

*for every*$x,y\in S$

*the function*

*f*

*is preinvex with respect to*

*η*

*on*

*η*-

*path*${P}_{xv}$

*if and only if the function*

*defined by*

*is convex on* $[0,1]$.

*Proof*Suppose that

*φ*is convex on $[0,1]$ and ${z}_{1}:=x+{t}_{1}\eta (y,x)\in {P}_{xv}$, ${z}_{2}:=x+{t}_{2}\eta (y,x)\in {P}_{xv}$. Fix $\lambda \in [0,1]$. Since

*η*satisfies condition

*C*, by (13) we have

Hence, *f* is preinvex with respect to *η* on *η*-path ${P}_{xv}$.

*f*be preinvex with respect to

*η*on

*η*-path ${P}_{xv}$. Suppose that ${t}_{1},{t}_{2}\in [0,1]$. Then, for every $\lambda \in [0,1]$ we have

Therefore, *φ* is quasi-convex on $[0,1]$. □

The following theorem is a generalization of Proposition 1 in [6].

**Theorem 3.1**

*Let*

*be an open invex set with respect to*.

*Assume that*

*η*

*satisfies condition*

*C*.

*Suppose that for every*$x,y\in S$

*the function*

*is preinvex with respect to*

*η*

*on*

*η*-

*path*${P}_{xv}$.

*Then*,

*for every*$a,b\in (0,1)$

*with*$a<b$

*the following inequality holds*,

*Proof*Let $x,y\in S$ and $a,b\in (0,1)$ with $a<b$. Since

*f*is preinvex with respect to

*η*on

*η*-path ${P}_{xv}$ by Proposition 3.1 the function defined by

*ϕ*implies that

and we deduce that (16) holds. □

## 4 Second-order differentiable functions

In this section, we introduce some generalizations of Hermite-Hadamard-type inequality for functions whose second derivatives absolute values are preinvex. We begin with the following lemma (see Lemma 1 in [14] and Lemma 4 in [15]).

**Lemma 4.1**

*Let*

*be an open invex subset with respect to*

*and*$a,b\in A$

*with*$\theta (a,b)\ne 0$.

*Suppose that*

*is a differentiable function*.

*If*${f}^{\mathrm{\prime}\mathrm{\prime}}$

*is integrable on the*

*θ*-

*path*${P}_{bc}$, $c=b+\theta (a,b)$

*then*,

*the following equality holds*

*Proof*Suppose that $a,b\in A$. Since

*A*is an invex set with respect to

*θ*, for every $t\in [0,1]$ we have $b+t\theta (a,b)\in A$. Integrating by parts implies that

which completes the proof. □

**Theorem 4.1**

*Let*

*be an open invex subset with respect to*

*and*$\theta (a,b)\ne 0$

*for all*$a\ne b$.

*Suppose that*

*is a twice differentiable function on*

*A*.

*If*$|{f}^{\u2033}|$

*is preinvex on*

*A*

*and*${f}^{\u2033}$

*is integrable on the*

*θ*-

*path*${P}_{bc}$, $c=b+\theta (a,b)$

*then*,

*the following inequality holds*

*Proof*Suppose that $a,b\in A$. Since

*A*is an invex set with respect to

*θ*, for every $t\in [0,1]$ we have $b+t\theta (a,b)\in A$. By preinvexity of $|{f}^{\u2033}|$ and Lemma 4.1 we get

which completes the proof. □

The corresponding version for powers of the absolute value of the second derivative is incorporated in the following theorem.

**Theorem 4.2**

*Let*

*be an open invex subset with respect to*

*and*$\theta (a,b)\ne 0$

*for all*$a\ne b$.

*Suppose that*

*is a twice differentiable function on*

*A*

*and*${|{f}^{\u2033}|}^{\frac{p}{p-1}}$

*is preinvex on*

*A*,

*for*$p>1$.

*If*${f}^{\u2033}$

*is integrable on the*

*θ*-

*path*${P}_{bc}$, $c=b+\theta (a,b)$

*then*,

*the following inequality holds*

*Proof*By preinvexity of $|{f}^{\u2033}|$, Lemma 4.1 and using the well-known Hölder integral inequality, we get

which completes the proof. □

A more general inequality is given using Lemma 4.1, as follows:

**Theorem 4.3**

*Let*

*be an open invex subset with respect to*

*and*$\theta (a,b)\ne 0$

*for all*$a\ne b$.

*Suppose that*

*is a twice differentiable function on*

*A*

*and*${|{f}^{\u2033}|}^{q}$

*is preinvex on*

*A*,

*for*$q>1$.

*If*${f}^{\u2033}$

*is integrable on the*

*θ*-

*path*${P}_{bc}$, $c=b+\theta (a,b)$

*then*,

*the following inequality holds*

*Proof*By preinvexity of $|{f}^{\u2033}|$, Lemma 4.1 and using the well-known weighted power mean inequality, we get

which completes the proof. □

## Declarations

## Authors’ Affiliations

## References

- Dragomir SS: Two mappings on connection to Hadamard’s inequality.
*J. Math. Anal. Appl.*1992, 167: 49–56. 10.1016/0022-247X(92)90233-4MATHMathSciNetView ArticleGoogle Scholar - Dragomir SS: On Hadamard’s inequalities for convex functions.
*Math. Balk.*1992, 6: 215–222.MATHGoogle Scholar - Dragomir SS, Pecaric JE, Sandor J: A note on the Jensen-Hadamard inequality.
*Anal. Numér. Théor. Approx.*1990, 19: 29–34.MATHMathSciNetGoogle Scholar - Dragomir SS, Pecaric JE, Persson LE: Some inequalities of Hadamard type.
*Soochow J. Math.*1995, 21: 335–341.MATHMathSciNetGoogle Scholar - Dragomir SS, Agarwal RP: Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula.
*Appl. Math. Lett.*1998, 11: 91–95.MATHMathSciNetView ArticleGoogle Scholar - Ion DA: Some estimates on the Hermite-Hadamard inequality through quasiconvex functions.
*Ann. Univ. Craiova, Math. Comput. Sci. Ser.*2007, 34: 82–87.MathSciNetGoogle Scholar - Hanson MA: On sufficiency of the Kuhn-Tucker conditions.
*J. Math. Anal. Appl.*1981, 80: 545–550. 10.1016/0022-247X(81)90123-2MATHMathSciNetView ArticleGoogle Scholar - Weir T, Mond B: Preinvex functions in multiple objective optimization.
*J. Math. Anal. Appl.*1998, 136: 29–38.MathSciNetView ArticleGoogle Scholar - Noor MA: Hermite-Hadamard integral inequalities for log-preinvex functions.
*J. Math. Anal. Approx. Theory*2007, 2: 126–131.MATHMathSciNetGoogle Scholar - Noor MA: On Hadamard integral inequalities involving two log-preinvex functions.
*J. Inequal. Pure Appl. Math.*2007, 8: 1–6.Google Scholar - Antczak T: Mean value in invexity analysis.
*Nonlinear Anal.*2005, 60: 1471–1484.View ArticleGoogle Scholar - Yang XM, Li D: On properties of preinvex functions.
*J. Math. Anal. Appl.*2001, 256: 229–241. 10.1006/jmaa.2000.7310MATHMathSciNetView ArticleGoogle Scholar - Mohan SR, Neogy SK: On invex sets and preinvex function.
*J. Math. Anal. Appl.*1995, 189: 901–908. 10.1006/jmaa.1995.1057MATHMathSciNetView ArticleGoogle Scholar - Alomari M, Drus M, Dragomir SS: New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are quasi-convex.
*Tamkang J. Math.*2010, 41: 353–359.MATHMathSciNetGoogle Scholar - Dragomir SS, Pearce CEM RGMIA Monographs. In
*Selected Topics on Hermite-Hadamard Inequalities and Applications*. Victoria University, Melbourne; 2000. http://ajmaa.org/RGMIA/monographs.phpGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.