Skip to main content

Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials

Abstract

The purpose of this paper is to investigate some interesting identities on the Bernoulli and Euler polynomials arising from the orthogonality of Legendre polynomials in the inner product space P n .

1 Introduction

As is well known, the Legendre polynomial P n (x) is a solutions of the following differential equation:

( 1 − x 2 ) u ″ −2x u ′ +n(n+1)u=0(see [1–7]),

where n=0,1,2,… .

It is a polynomial of degree n. If n is even or odd, then P n (x) is accordingly even or odd. They are determined up to constant and normalized so that P n (1)=1.

Rodrigues’ formula is given by

P n (x)= 1 2 n n ! { ( d d x ) n ( x 2 − 1 ) n } ,n∈ Z + .
(1.1)

Integrating by parts, we can derive

∫ − 1 1 P m (x) P n (x)dx= 2 2 n + 1 δ m , n (see [1–7]),
(1.2)

where δ m , n is the Kronecker symbol.

By (1.1), we get

P n (x)= 1 2 n ∑ k = 0 [ n 2 ] ( − 1 ) k ( n k ) ( 2 n − 2 k n ) x n − 2 k .
(1.3)

The generating function is given by

( 1 − 2 x t + t 2 ) − 1 2 = ∑ n = 0 ∞ P n (x) t n .
(1.4)

The Bernoulli polynomial is defined by a generating function to be

t e t − 1 e x t = e B ( x ) t = ∑ n = 0 ∞ B n (x) t n n ! (see [8–13])
(1.5)

with the usual convention about replacing B n (x) by B n (x).

In the special case, x=0, B n (0)= B n are called the Bernoulli numbers.

From (1.5), we have

B n (x)= ∑ l = 0 n ( n l ) B n − l x l (see [10–26]).
(1.6)

As is well known, the Euler numbers are defined by

E 0 =1, ( E + 1 ) n + E n =2 δ 0 , n (see [10–13])
(1.7)

with the usual convention about replacing E n by E n .

The Euler polynomials are defined as

E n (x)= ∑ l = 0 n ( n l ) E n − l x l (see [27–31]).
(1.8)

Let P n ={p(x)∈O[x]|degp(x)≤n}. Then P n is an inner product space with respect to the inner product 〈⋅,⋅〉 with

〈 q 1 ( x ) , q 2 ( x ) 〉 = ∫ − 1 1 q 1 (x) q 2 (x)dx,

where q 1 (x), q 2 (x)∈ P n .

From (1.2), we can show that { P 0 (x), P 1 (x),…, P n (x)} is an orthogonal basis for P n . In this paper, we derive some interesting identities on the Bernoulli and Euler polynomials from the orthogonality of Legendre polynomials in P n .

2 Some identities on the Bernoulli and Euler polynomials

For q(x)∈ P n , let

q(x)= ∑ k = 0 n C k P k (x).
(2.1)

Then, from (1.2), we have

〈 q ( x ) , P k ( x ) 〉 = C k 〈 P k ( x ) , P k ( x ) 〉 = C k ∫ − 1 1 { P k ( x ) } 2 d x = 2 2 k + 1 C k .
(2.2)

By (2.2), we get

C k = 2 k + 1 2 〈 q ( x ) , P k ( x ) 〉 = 2 k + 1 2 ∫ − 1 1 P k ( x ) q ( x ) d x = ( 2 k + 1 2 ) 1 2 k k ! ∫ − 1 1 ( d k d x k ( x 2 − 1 ) k ) q ( x ) d x = ( 2 k + 1 2 k + 1 k ! ) ∫ − 1 1 ( d k d x k ( x 2 − 1 ) k ) q ( x ) d x .
(2.3)

Therefore, by (2.1) and (2.3), we obtain the following proposition.

Proposition 2.1 Forq(x)∈ P n , let

q(x)= ∑ k = 0 n C k P k (x).

Then

C k = 2 k + 1 2 k + 1 k ! ∫ − 1 1 ( d k d x k ( x 2 − 1 ) k ) q(x)dx.

Let us assume that q(x)= x n ∈ P n .

From Proposition 2.1, we have

C k = 2 k + 1 2 k + 1 k ! ∫ − 1 1 ( d k d x k ( x 2 − 1 ) k ) x n d x = 2 k + 1 2 k + 1 ( − 1 ) k ( n k ) ∫ − 1 1 ( x 2 − 1 ) k x n − k d x = 2 k + 1 2 k + 1 ( n k ) ( 1 + ( − 1 ) n − k ) ∫ 0 1 ( 1 − x 2 ) k x n − k d x .
(2.4)

For n−k≡0(mod2), by (2.4), we get

C k = 2 k + 1 2 k + 1 ( n k ) ∫ 0 1 ( 1 − y ) k y n − k − 1 2 d y = 2 k + 1 2 k + 1 ( n k ) B ( k + 1 , n − k + 1 2 ) = 2 k + 1 2 k + 1 ( n k ) Γ ( k + 1 ) Γ ( n − k + 1 2 ) Γ ( n + k + 1 2 + 1 ) = 2 k + 1 2 k + 1 ( n k ) k ! Γ ( n − k + 1 2 ) ( n + k + 1 2 ) ( n + k − 1 2 ) ⋯ ( n − k + 1 2 ) Γ ( n − k + 1 2 ) = 2 k + 1 2 k + 1 ( n k ) k ! 2 k + 1 ( n − k ) ! ( n + k + 2 ) ( n + k ) ⋯ ( n − k + 2 ) ( n + k + 2 ) ! = ( 2 k + 1 ) 2 k + 1 ( n + k + 2 ) ! × n ! ( n + k + 2 2 ) ! ( n − k 2 ) ! .
(2.5)

Here the beta function B(x,y) is defined by

B(x,y)= ∫ 0 1 t x − 1 ( 1 − t ) y − 1 dt ( Re ( x ) , Re ( y ) > 0 ) ,

and it is well known that

B(x,y)= Γ ( x ) Γ ( y ) Γ ( x + y ) ,

where Γ(s)= ∫ 0 ∞ t s − 1 e − t dt (Re(s)>0) is the gamma function.

By Proposition 2.1 and (2.5), we get

x n = ∑ 0 ≤ k ≤ n , n − k ≡ 0 ( mod 2 ) ( 2 k + 1 ) n ! 2 k + 1 ( n + k + 2 2 ) ! ( n + k + 2 ) ! ( n − k 2 ) ! P k (x).
(2.6)

From (1.5), we can easily derive the following equation (2.7):

x n = 1 n + 1 ∑ l = 0 n ( n + 1 l ) B l (x)(n∈ Z + ).
(2.7)

Therefore, by (2.6) and (2.7), we obtain the following Proposition 2.2.

Proposition 2.2 Forn∈ Z + , we have

∑ l = 0 n B l ( x ) ( n + 1 − l ) ! l ! = ∑ 0 ≤ k ≤ n , n − k ≡ 0 ( mod 2 ) ( 2 k + 1 ) 2 k + 1 ( n + k + 2 2 ) ! ( n + k + 2 ) ! ( n − k 2 ) ! P k (x).

Let us take q(x)= B n (x)∈ P n . By Proposition 2.1, we get

C k = 2 k + 1 2 k + 1 k ! ∫ − 1 1 ( d k d x k ( x 2 − 1 ) k ) B n ( x ) d x = ( − 1 ) k ( 2 k + 1 ) 2 k + 1 ( n k ) ∫ − 1 1 ( x 2 − 1 ) k B n − k ( x ) d x = ( − 1 ) k ( 2 k + 1 ) 2 k + 1 ( n k ) ∑ l = 0 n − k ( n − k l ) B n − k − l ∫ − 1 1 ( x 2 − 1 ) k x l d x = 2 k + 1 2 k + 1 ( n k ) ∑ l = 0 n − k ( n − k l ) B n − k − l ( 1 + ( − 1 ) l ) ∫ 0 1 ( 1 − x 2 ) k x l d x .
(2.8)

For l∈ Z + with l≡0(mod2), we have

C k = 2 k + 1 2 k + 1 ( n k ) ∑ 0 ≤ l ≤ n − k , l is even ( n − k l ) B n − k − l ∫ 0 1 ( 1 − y ) k y l − 1 2 d y = 2 k + 1 2 k + 1 ( n k ) ∑ 0 ≤ l ≤ n − k , l is even ( n − k l ) B n − k − l Γ ( k + 1 ) Γ ( l + 1 2 ) Γ ( 2 k + l + 1 2 + 1 ) = ( 2 k + 1 ) 2 k + 1 n ! ∑ 0 ≤ l ≤ n − k , l ≡ 0 ( mod 2 ) B n − k − l ( n − k − l ) ! × ( 2 k + l + 2 2 ) ! ( 2 k + l + 2 ) ! ( l 2 ) ! .
(2.9)

In [14], we showed that

B n (x)= ∑ k = 0 n − 2 ( n k ) B n − k E k (x)+ E n (x)= ∑ k = 0 , k ≠ n − 1 n ( n k ) B n − k E k (x).
(2.10)

Therefore, by Proposition 2.1, (2.9) and (2.10), we obtain the following theorem.

Theorem 2.3 Forn∈ Z + , we have

1 n ! ∑ k = 0 , k ≠ n − 1 n ( n k ) B n − k E k (x)= ∑ k = 0 n ( ∑ 0 ≤ l ≤ n − k , l ≡ 0 ( mod 2 ) ( 2 k + 1 ) 2 k + 1 ( l + 2 k + 2 2 ) ! B n − k − l ( n − k − l ) ! ( l + 2 k + 2 ) ! ( l 2 ) ! ) P k (x).

By the same method of Theorem 2.3, we easily see that

E n ( x ) n ! = ∑ k = 0 n ( ∑ 0 ≤ l ≤ n − k , l ≡ 0 ( mod 2 ) ( 2 k + 1 ) 2 k + 1 ( l + 2 k + 2 2 ) ! B n − k − l ( n − k − l ) ! ( l + 2 k + 2 ) ! ( l 2 ) ! ) P k (x).
(2.11)

Let us take q(x)= ∑ k = 0 n B k (x) B n − k (x)∈ P n . Then we see that

(2.12)

The equation (2.12) was proved in [14].

By (2.12) and Proposition 2.2, we have

C k = 2 k + 1 2 k + 1 k ! { ( n + 1 ) ∑ l = 0 n ( n l ) n − l + 1 ( ∑ m = l n B m − l B n − m + B n − 1 − l ) × ∫ − 1 1 E l ( x ) ( d k d x k ( x 2 − 1 ) k ) d x + ( n 2 − 1 ) n 12 ∫ − 1 1 ( d k d x k ( x 2 − 1 ) k ) E n − 2 ( x ) d x } .
(2.13)

Integrating by parts, we get

(2.14)

Then we see that

(2.15)

It is easy to show that

(2.16)

Therefore, by (2.13), (2.14), (2.15) and (2.16), we get

C k = ( 2 k + 1 ) 2 k + 1 { ( n + 1 ) ∑ l = k n ( n k ) n − l + 1 ( ∑ m = l n B m − l B n − m + B n − 1 − l ) × ∑ k ≤ j ≤ l , j − k ≡ 0 ( mod 2 ) ( l j ) E l − j j ! ( j + k + 2 ) ! × ( j + k + 2 2 ) ! ( j − k 2 ) ! + ( n 2 − 1 ) n 12 ∑ k ≤ j ≤ n − 2 , j − k ≡ 0 ( mod 2 ) ( n − 2 j ) E n − 2 − j j ! ( j + k + 2 ) ! × ( j + k + 2 2 ) ! ( j − k 2 ) ! } .
(2.17)

Therefore, by Proposition 2.1 and (2.17), we obtain the following theorem.

Theorem 2.4 Forn∈ Z + , we have

∑ k = 0 n B k ( x ) B n − k ( x ) = ∑ k = 0 n ( 2 k + 1 ) 2 k + 1 { ( n + 1 ) ∑ l = k n ( n k ) n − l + 1 ( ∑ m = l n B m − l B n − m + B n − 1 − l ) × ∑ k ≤ j ≤ l , j − k ≡ 0 ( mod 2 ) ( l j ) E l − j j ! ( j + k + 2 ) ! × ( j + k + 2 2 ) ! ( j − k 2 ) ! + ( n 2 − 1 ) n 12 ∑ k ≤ j ≤ n − 2 , j − k ≡ 0 ( mod 2 ) ( n − 2 j ) E n − 2 − j j ! ( j + k + 2 ) ! × ( j + k + 2 2 ) ! ( j − k 2 ) ! } P k ( x ) .

Remark 2.5 The extended Laguerre polynomials are given by

L n α (x)= ∑ r = 0 n ( − 1 ) r r ! ( n + α n − r ) x r (α>−1).

By the same method, we get

L n α (x)= ∑ k = 0 n ∑ 0 ≤ l ≤ n − k , l ≡ 0 ( mod 2 ) ( − 1 ) k + l ( 2 k + 1 ) 2 k + 1 ( n + α n − k − l ) ( l + 2 k + 2 2 ) ! ( l + 2 k + 2 ) ! ( l 2 ) ! P k (x)

and

H n (x)= ∑ k = 0 n ∑ 0 ≤ l ≤ n − k , l ≡ 0 ( mod 2 ) ( 2 k + 1 ) 2 2 k + l + 1 n ! ( l + 2 k + 2 2 ) ! H n − k − l ( n − k − l ) ! ( l + 2 k + 2 ) ! ( l 2 ) ! P k (x),

where H n (x) is the Hermite polynomial of degree n (see [7]).

References

  1. Carlitz L: Some integrals containing products of Legendre polynomials. Arch. Math. 1961, 12: 334–340. 10.1007/BF01650571

    Article  MathSciNet  MATH  Google Scholar 

  2. Carlitz L: Some congruence properties of the Legendre polynomials. Math. Mag. 1960/1961, 34: 387–390.

    Article  MathSciNet  Google Scholar 

  3. Carlitz L: Some arithmetic properties of the Legendre polynomials. Acta Arith. 1958, 4: 99–107.

    MathSciNet  MATH  Google Scholar 

  4. Al-Salam WA, Carlitz L: Finite summation formulas and congruences for Legendre and Jacobi polynomials. Monatshefte Math. 1958, 62: 108–118. 10.1007/BF01301283

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlitz L: Some arithmetic properties of the Legendre polynomials. Proc. Camb. Philos. Soc. 1957, 53: 265–268. 10.1017/S0305004100032278

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlitz L: Note on Legendre polynomials. Bull. Calcutta Math. Soc. 1954, 46: 93–95.

    MathSciNet  MATH  Google Scholar 

  7. Carlitz L: Congruence properties of the polynomials of Hermite, Laguerre and Legendre. Math. Z. 1954, 59: 474–483.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ding D, Yang J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. 2010, 20(1):7–21.

    MathSciNet  MATH  Google Scholar 

  9. Kim G, Kim B, Choi J: The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers. Adv. Stud. Contemp. Math. 2008, 17(2):137–145.

    MathSciNet  MATH  Google Scholar 

  10. Kim T: A note on q -Bernstein polynomials. Russ. J. Math. Phys. 2011, 18(1):73–82. 10.1134/S1061920811010080

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim T: Some identities on the q -Euler polynomials of higher order and q -Stirling numbers by the fermionic p -adic integral on Z p . Russ. J. Math. Phys. 2009, 16(4):484–491. 10.1134/S1061920809040037

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim T: Symmetry of power sum polynomials and multivariate fermionic p -adic invariant integral on Z p . Russ. J. Math. Phys. 2009, 16(1):93–96. 10.1134/S1061920809010063

    Article  MathSciNet  MATH  Google Scholar 

  13. Kim T: q -Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 2008, 15(1):51–57.

    Article  MathSciNet  MATH  Google Scholar 

  14. Kim, T, Kim, DS, Dolgy, DV, Rim, SH: Some identities on the Euler numbers arising from Euler basis polynomials. ARS Comb. 109 (2013, in press)

  15. Kudo A: A congruence of generalized Bernoulli number for the character of the first kind. Adv. Stud. Contemp. Math. 2000, 2: 1–8.

    MathSciNet  MATH  Google Scholar 

  16. Leyendekkers JV, Shannon AG, Wong GCK: Integer structure analysis of the product of adjacent integers and Euler’s extension of Fermat’s last theorem. Adv. Stud. Contemp. Math. 2008, 17(2):221–229.

    MathSciNet  MATH  Google Scholar 

  17. Ozden H, Cangul IN, Simsek Y: Remarks on q -Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 2009, 18(1):41–48.

    MathSciNet  MATH  Google Scholar 

  18. Rim S-H, Lee SJ: Some identities on the twisted (h,q) -Genocchi numbers and polynomials associated with q -Bernstein polynomials. Int. J. Math. Math. Sci. 2011., 2011: Article ID 482840

    Google Scholar 

  19. Rim SH, Jin JH, Moon EJ, Lee SJ: Some identities on the q -Genocchi polynomials of higher-order and q -Stirling numbers by the fermionic p -adic integral on Z p . Int. J. Math. Math. Sci. 2010., 2010: Article ID 860280

    Google Scholar 

  20. Ryoo CS: A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 2011, 14(4):495–501.

    MathSciNet  MATH  Google Scholar 

  21. Ryoo CS: Some identities of the twisted q -Euler numbers and polynomials associated with q -Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14(2):239–248.

    MathSciNet  MATH  Google Scholar 

  22. Ryoo CS: Some relations between twisted q -Euler numbers and Bernstein polynomials. Adv. Stud. Contemp. Math. 2011, 21(2):217–223.

    MathSciNet  MATH  Google Scholar 

  23. Simsek Y, Acikgoz M:A new generating function of (q−) Bernstein-type polynomials and their interpolation function. Abstr. Appl. Anal. 2010., 2010: Article ID 769095

    Google Scholar 

  24. Simsek Y: Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv. Stud. Contemp. Math. 2008, 16(2):251–278.

    MathSciNet  MATH  Google Scholar 

  25. Simsek Y:Complete sum of products of (h,q)-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 2010, 16(11):1331–1348. 10.1080/10236190902813967

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang Z, Yang H: Some closed formulas for generalized Bernoulli-Euler numbers and polynomials. Proc. Jangjeon Math. Soc. 2008, 11(2):191–198.

    MathSciNet  MATH  Google Scholar 

  27. Acikgoz M, Erdal D, Araci S: A new approach to q -Bernoulli numbers and q -Bernoulli polynomials related to q -Bernstein polynomials. Adv. Differ. Equ. 2010., 2010: Article ID 951764

    Google Scholar 

  28. Araci S, Erdal D, Seo J: A study on the fermionic p -adic q -integral representation on Z p associated with weighted q -Bernstein and q -Genocchi polynomials. Abstr. Appl. Anal. 2011., 2011: Article ID 649248

    Google Scholar 

  29. Bayad A: Modular properties of elliptic Bernoulli and Euler functions. Adv. Stud. Contemp. Math. 2010, 20(3):389–401.

    MathSciNet  MATH  Google Scholar 

  30. Bayad A, Kim T: Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 2010, 20(2):247–253.

    MathSciNet  MATH  Google Scholar 

  31. Bayad A, Kim T: Identities involving values of Bernstein, q -Bernoulli, and q -Euler polynomials. Russ. J. Math. Phys. 2011, 18(2):133–143. 10.1134/S1061920811020014

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to referee for his/her valuable comments and information. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology 2012R1A1A2003786.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taekyun Kim.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally in this paper. They read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Kim, D.S., Rim, SH. & Kim, T. Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials. J Inequal Appl 2012, 227 (2012). https://doi.org/10.1186/1029-242X-2012-227

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-227

Keywords