• Research
• Open Access

# Some identities on Bernoulli and Euler polynomials arising from orthogonality of Legendre polynomials

Journal of Inequalities and Applications20122012:227

https://doi.org/10.1186/1029-242X-2012-227

• Accepted: 25 September 2012
• Published:

## Abstract

The purpose of this paper is to investigate some interesting identities on the Bernoulli and Euler polynomials arising from the orthogonality of Legendre polynomials in the inner product space ${\mathbb{P}}_{n}$.

## Keywords

• Differential Equation
• Generate Function
• Gamma Function
• Product Space
• Legendre Polynomial

## 1 Introduction

As is well known, the Legendre polynomial ${P}_{n}\left(x\right)$ is a solutions of the following differential equation:
$\left(1-{x}^{2}\right){u}^{″}-2x{u}^{\prime }+n\left(n+1\right)u=0\phantom{\rule{1em}{0ex}}\left(\text{see [1–7]}\right),$

where $n=0,1,2,\dots$ .

It is a polynomial of degree n. If n is even or odd, then ${P}_{n}\left(x\right)$ is accordingly even or odd. They are determined up to constant and normalized so that ${P}_{n}\left(1\right)=1$.

Rodrigues’ formula is given by
${P}_{n}\left(x\right)=\frac{1}{{2}^{n}n!}\left\{{\left(\frac{d}{dx}\right)}^{n}{\left({x}^{2}-1\right)}^{n}\right\},\phantom{\rule{1em}{0ex}}n\in {\mathbb{Z}}_{+}.$
(1.1)
Integrating by parts, we can derive
${\int }_{-1}^{1}{P}_{m}\left(x\right){P}_{n}\left(x\right)\phantom{\rule{0.2em}{0ex}}dx=\frac{2}{2n+1}{\delta }_{m,n}\phantom{\rule{1em}{0ex}}\left(\text{see [1–7]}\right),$
(1.2)

where ${\delta }_{m,n}$ is the Kronecker symbol.

By (1.1), we get
${P}_{n}\left(x\right)=\frac{1}{{2}^{n}}\sum _{k=0}^{\left[\frac{n}{2}\right]}{\left(-1\right)}^{k}\left(\genfrac{}{}{0}{}{n}{k}\right)\left(\genfrac{}{}{0}{}{2n-2k}{n}\right){x}^{n-2k}.$
(1.3)
The generating function is given by
${\left(1-2xt+{t}^{2}\right)}^{-\frac{1}{2}}=\sum _{n=0}^{\mathrm{\infty }}{P}_{n}\left(x\right){t}^{n}.$
(1.4)
The Bernoulli polynomial is defined by a generating function to be
$\frac{t}{{e}^{t}-1}{e}^{xt}={e}^{B\left(x\right)t}=\sum _{n=0}^{\mathrm{\infty }}{B}_{n}\left(x\right)\frac{{t}^{n}}{n!}\phantom{\rule{1em}{0ex}}\left(\text{see [8–13]}\right)$
(1.5)

with the usual convention about replacing ${B}^{n}\left(x\right)$ by ${B}_{n}\left(x\right)$.

In the special case, $x=0$, ${B}_{n}\left(0\right)={B}_{n}$ are called the Bernoulli numbers.

From (1.5), we have
${B}_{n}\left(x\right)=\sum _{l=0}^{n}\left(\genfrac{}{}{0}{}{n}{l}\right){B}_{n-l}{x}^{l}\phantom{\rule{1em}{0ex}}\left(\text{see [10–26]}\right).$
(1.6)
As is well known, the Euler numbers are defined by
${E}_{0}=1,\phantom{\rule{2em}{0ex}}{\left(E+1\right)}^{n}+{E}_{n}=2{\delta }_{0,n}\phantom{\rule{1em}{0ex}}\left(\text{see [10–13]}\right)$
(1.7)

with the usual convention about replacing ${E}^{n}$ by ${E}_{n}$.

The Euler polynomials are defined as
${E}_{n}\left(x\right)=\sum _{l=0}^{n}\left(\genfrac{}{}{0}{}{n}{l}\right){E}_{n-l}{x}^{l}\phantom{\rule{1em}{0ex}}\left(\text{see [27–31]}\right).$
(1.8)
Let ${\mathbb{P}}_{n}=\left\{p\left(x\right)\in \mathbb{O}\left[x\right]|degp\left(x\right)\le n\right\}$. Then ${\mathbb{P}}_{n}$ is an inner product space with respect to the inner product $〈\cdot ,\cdot 〉$ with
$〈{q}_{1}\left(x\right),{q}_{2}\left(x\right)〉={\int }_{-1}^{1}{q}_{1}\left(x\right){q}_{2}\left(x\right)\phantom{\rule{0.2em}{0ex}}dx,$

where ${q}_{1}\left(x\right),{q}_{2}\left(x\right)\in {\mathbb{P}}_{n}$.

From (1.2), we can show that $\left\{{P}_{0}\left(x\right),{P}_{1}\left(x\right),\dots ,{P}_{n}\left(x\right)\right\}$ is an orthogonal basis for ${\mathbb{P}}_{n}$. In this paper, we derive some interesting identities on the Bernoulli and Euler polynomials from the orthogonality of Legendre polynomials in ${\mathbb{P}}_{n}$.

## 2 Some identities on the Bernoulli and Euler polynomials

For $q\left(x\right)\in {\mathbb{P}}_{n}$, let
$q\left(x\right)=\sum _{k=0}^{n}{C}_{k}{P}_{k}\left(x\right).$
(2.1)
Then, from (1.2), we have
$\begin{array}{rcl}〈q\left(x\right),{P}_{k}\left(x\right)〉& =& {C}_{k}〈{P}_{k}\left(x\right),{P}_{k}\left(x\right)〉\\ =& {C}_{k}{\int }_{-1}^{1}{\left\{{P}_{k}\left(x\right)\right\}}^{2}\phantom{\rule{0.2em}{0ex}}dx\\ =& \frac{2}{2k+1}{C}_{k}.\end{array}$
(2.2)
By (2.2), we get
$\begin{array}{rcl}{C}_{k}& =& \frac{2k+1}{2}〈q\left(x\right),{P}_{k}\left(x\right)〉=\frac{2k+1}{2}{\int }_{-1}^{1}{P}_{k}\left(x\right)q\left(x\right)\phantom{\rule{0.2em}{0ex}}dx\\ =& \left(\frac{2k+1}{2}\right)\frac{1}{{2}^{k}k!}{\int }_{-1}^{1}\left(\frac{{d}^{k}}{d{x}^{k}}{\left({x}^{2}-1\right)}^{k}\right)q\left(x\right)\phantom{\rule{0.2em}{0ex}}dx\\ =& \left(\frac{2k+1}{{2}^{k+1}k!}\right){\int }_{-1}^{1}\left(\frac{{d}^{k}}{d{x}^{k}}{\left({x}^{2}-1\right)}^{k}\right)q\left(x\right)\phantom{\rule{0.2em}{0ex}}dx.\end{array}$
(2.3)

Therefore, by (2.1) and (2.3), we obtain the following proposition.

Proposition 2.1 For$q\left(x\right)\in {\mathbb{P}}_{n}$, let
$q\left(x\right)=\sum _{k=0}^{n}{C}_{k}{P}_{k}\left(x\right).$
Then
${C}_{k}=\frac{2k+1}{{2}^{k+1}k!}{\int }_{-1}^{1}\left(\frac{{d}^{k}}{d{x}^{k}}{\left({x}^{2}-1\right)}^{k}\right)q\left(x\right)\phantom{\rule{0.2em}{0ex}}dx.$

Let us assume that $q\left(x\right)={x}^{n}\in {\mathbb{P}}_{n}$.

From Proposition 2.1, we have
$\begin{array}{rcl}{C}_{k}& =& \frac{2k+1}{{2}^{k+1}k!}{\int }_{-1}^{1}\left(\frac{{d}^{k}}{d{x}^{k}}{\left({x}^{2}-1\right)}^{k}\right){x}^{n}\phantom{\rule{0.2em}{0ex}}dx\\ =& \frac{2k+1}{{2}^{k+1}}{\left(-1\right)}^{k}\left(\genfrac{}{}{0}{}{n}{k}\right){\int }_{-1}^{1}{\left({x}^{2}-1\right)}^{k}{x}^{n-k}\phantom{\rule{0.2em}{0ex}}dx\\ =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)\left(1+{\left(-1\right)}^{n-k}\right){\int }_{0}^{1}{\left(1-{x}^{2}\right)}^{k}{x}^{n-k}\phantom{\rule{0.2em}{0ex}}dx.\end{array}$
(2.4)
For $n-k\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)$, by (2.4), we get
$\begin{array}{rcl}{C}_{k}& =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right){\int }_{0}^{1}{\left(1-y\right)}^{k}{y}^{\frac{n-k-1}{2}}\phantom{\rule{0.2em}{0ex}}dy\\ =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)B\left(k+1,\frac{n-k+1}{2}\right)\\ =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)\frac{\mathrm{\Gamma }\left(k+1\right)\mathrm{\Gamma }\left(\frac{n-k+1}{2}\right)}{\mathrm{\Gamma }\left(\frac{n+k+1}{2}+1\right)}\\ =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)\frac{k!\mathrm{\Gamma }\left(\frac{n-k+1}{2}\right)}{\left(\frac{n+k+1}{2}\right)\left(\frac{n+k-1}{2}\right)\cdots \left(\frac{n-k+1}{2}\right)\mathrm{\Gamma }\left(\frac{n-k+1}{2}\right)}\\ =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)k!{2}^{k+1}\frac{\left(n-k\right)!\left(n+k+2\right)\left(n+k\right)\cdots \left(n-k+2\right)}{\left(n+k+2\right)!}\\ =& \frac{\left(2k+1\right){2}^{k+1}}{\left(n+k+2\right)!}×\frac{n!\left(\frac{n+k+2}{2}\right)!}{\left(\frac{n-k}{2}\right)!}.\end{array}$
(2.5)
Here the beta function $B\left(x,y\right)$ is defined by
$B\left(x,y\right)={\int }_{0}^{1}{t}^{x-1}{\left(1-t\right)}^{y-1}\phantom{\rule{0.2em}{0ex}}dt\phantom{\rule{1em}{0ex}}\left(Re\left(x\right),Re\left(y\right)>0\right),$
and it is well known that
$B\left(x,y\right)=\frac{\mathrm{\Gamma }\left(x\right)\mathrm{\Gamma }\left(y\right)}{\mathrm{\Gamma }\left(x+y\right)},$

where $\mathrm{\Gamma }\left(s\right)={\int }_{0}^{\mathrm{\infty }}{t}^{s-1}{e}^{-t}\phantom{\rule{0.2em}{0ex}}dt$ ($Re\left(s\right)>0$) is the gamma function.

By Proposition 2.1 and (2.5), we get
${x}^{n}=\sum _{0\le k\le n,n-k\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\frac{\left(2k+1\right)n!{2}^{k+1}\left(\frac{n+k+2}{2}\right)!}{\left(n+k+2\right)!\left(\frac{n-k}{2}\right)!}{P}_{k}\left(x\right).$
(2.6)
From (1.5), we can easily derive the following equation (2.7):
${x}^{n}=\frac{1}{n+1}\sum _{l=0}^{n}\left(\genfrac{}{}{0}{}{n+1}{l}\right){B}_{l}\left(x\right)\phantom{\rule{1em}{0ex}}\left(n\in {\mathbb{Z}}_{+}\right).$
(2.7)

Therefore, by (2.6) and (2.7), we obtain the following Proposition 2.2.

Proposition 2.2 For$n\in {\mathbb{Z}}_{+}$, we have
$\sum _{l=0}^{n}\frac{{B}_{l}\left(x\right)}{\left(n+1-l\right)!l!}=\sum _{0\le k\le n,n-k\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\frac{\left(2k+1\right){2}^{k+1}\left(\frac{n+k+2}{2}\right)!}{\left(n+k+2\right)!\left(\frac{n-k}{2}\right)!}{P}_{k}\left(x\right).$
Let us take $q\left(x\right)={B}_{n}\left(x\right)\in {\mathbb{P}}_{n}$. By Proposition 2.1, we get
$\begin{array}{rcl}{C}_{k}& =& \frac{2k+1}{{2}^{k+1}k!}{\int }_{-1}^{1}\left(\frac{{d}^{k}}{d{x}^{k}}{\left({x}^{2}-1\right)}^{k}\right){B}_{n}\left(x\right)\phantom{\rule{0.2em}{0ex}}dx\\ =& \frac{{\left(-1\right)}^{k}\left(2k+1\right)}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right){\int }_{-1}^{1}{\left({x}^{2}-1\right)}^{k}{B}_{n-k}\left(x\right)\phantom{\rule{0.2em}{0ex}}dx\\ =& \frac{{\left(-1\right)}^{k}\left(2k+1\right)}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)\sum _{l=0}^{n-k}\left(\genfrac{}{}{0}{}{n-k}{l}\right){B}_{n-k-l}{\int }_{-1}^{1}{\left({x}^{2}-1\right)}^{k}{x}^{l}\phantom{\rule{0.2em}{0ex}}dx\\ =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)\sum _{l=0}^{n-k}\left(\genfrac{}{}{0}{}{n-k}{l}\right){B}_{n-k-l}\left(1+{\left(-1\right)}^{l}\right){\int }_{0}^{1}{\left(1-{x}^{2}\right)}^{k}{x}^{l}\phantom{\rule{0.2em}{0ex}}dx.\end{array}$
(2.8)
For $l\in {\mathbb{Z}}_{+}$ with $l\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)$, we have
$\begin{array}{rcl}{C}_{k}& =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)\sum _{0\le l\le n-k,l\phantom{\rule{0.25em}{0ex}}\mathrm{is}\phantom{\rule{0.25em}{0ex}}\mathrm{even}}\left(\genfrac{}{}{0}{}{n-k}{l}\right){B}_{n-k-l}{\int }_{0}^{1}{\left(1-y\right)}^{k}{y}^{\frac{l-1}{2}}\phantom{\rule{0.2em}{0ex}}dy\\ =& \frac{2k+1}{{2}^{k+1}}\left(\genfrac{}{}{0}{}{n}{k}\right)\sum _{0\le l\le n-k,l\phantom{\rule{0.25em}{0ex}}\mathrm{is}\phantom{\rule{0.25em}{0ex}}\mathrm{even}}\left(\genfrac{}{}{0}{}{n-k}{l}\right){B}_{n-k-l}\frac{\mathrm{\Gamma }\left(k+1\right)\mathrm{\Gamma }\left(\frac{l+1}{2}\right)}{\mathrm{\Gamma }\left(\frac{2k+l+1}{2}+1\right)}\\ =& \left(2k+1\right){2}^{k+1}n!\sum _{0\le l\le n-k,l\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\frac{{B}_{n-k-l}}{\left(n-k-l\right)!}×\frac{\left(\frac{2k+l+2}{2}\right)!}{\left(2k+l+2\right)!\left(\frac{l}{2}\right)!}.\end{array}$
(2.9)
In [14], we showed that
${B}_{n}\left(x\right)=\sum _{k=0}^{n-2}\left(\genfrac{}{}{0}{}{n}{k}\right){B}_{n-k}{E}_{k}\left(x\right)+{E}_{n}\left(x\right)=\sum _{k=0,k\ne n-1}^{n}\left(\genfrac{}{}{0}{}{n}{k}\right){B}_{n-k}{E}_{k}\left(x\right).$
(2.10)

Therefore, by Proposition 2.1, (2.9) and (2.10), we obtain the following theorem.

Theorem 2.3 For$n\in {\mathbb{Z}}_{+}$, we have
$\frac{1}{n!}\sum _{k=0,k\ne n-1}^{n}\left(\genfrac{}{}{0}{}{n}{k}\right){B}_{n-k}{E}_{k}\left(x\right)=\sum _{k=0}^{n}\left(\sum _{0\le l\le n-k,l\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\frac{\left(2k+1\right){2}^{k+1}\left(\frac{l+2k+2}{2}\right)!{B}_{n-k-l}}{\left(n-k-l\right)!\left(l+2k+2\right)!\left(\frac{l}{2}\right)!}\right){P}_{k}\left(x\right).$
By the same method of Theorem 2.3, we easily see that
$\frac{{E}_{n}\left(x\right)}{n!}=\sum _{k=0}^{n}\left(\sum _{0\le l\le n-k,l\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\frac{\left(2k+1\right){2}^{k+1}\left(\frac{l+2k+2}{2}\right)!{B}_{n-k-l}}{\left(n-k-l\right)!\left(l+2k+2\right)!\left(\frac{l}{2}\right)!}\right){P}_{k}\left(x\right).$
(2.11)
Let us take $q\left(x\right)={\sum }_{k=0}^{n}{B}_{k}\left(x\right){B}_{n-k}\left(x\right)\in {\mathbb{P}}_{n}$. Then we see that
(2.12)

The equation (2.12) was proved in [14].

By (2.12) and Proposition 2.2, we have
$\begin{array}{rcl}{C}_{k}& =& \frac{2k+1}{{2}^{k+1}k!}\left\{\left(n+1\right)\sum _{l=0}^{n}\frac{\left(\genfrac{}{}{0}{}{n}{l}\right)}{n-l+1}\left(\sum _{m=l}^{n}{B}_{m-l}{B}_{n-m}+{B}_{n-1-l}\right)\\ ×{\int }_{-1}^{1}{E}_{l}\left(x\right)\left(\frac{{d}^{k}}{d{x}^{k}}{\left({x}^{2}-1\right)}^{k}\right)\phantom{\rule{0.2em}{0ex}}dx\\ +\frac{\left({n}^{2}-1\right)n}{12}{\int }_{-1}^{1}\left(\frac{{d}^{k}}{d{x}^{k}}{\left({x}^{2}-1\right)}^{k}\right){E}_{n-2}\left(x\right)\phantom{\rule{0.2em}{0ex}}dx\right\}.\end{array}$
(2.13)
Integrating by parts, we get
(2.14)
Then we see that
(2.15)
It is easy to show that
(2.16)
Therefore, by (2.13), (2.14), (2.15) and (2.16), we get
$\begin{array}{rcl}{C}_{k}& =& \left(2k+1\right){2}^{k+1}\left\{\left(n+1\right)\sum _{l=k}^{n}\frac{\left(\genfrac{}{}{0}{}{n}{k}\right)}{n-l+1}\left(\sum _{m=l}^{n}{B}_{m-l}{B}_{n-m}+{B}_{n-1-l}\right)\\ ×\sum _{k\le j\le l,j-k\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\left(\genfrac{}{}{0}{}{l}{j}\right){E}_{l-j}\frac{j!}{\left(j+k+2\right)!}×\frac{\left(\frac{j+k+2}{2}\right)!}{\left(\frac{j-k}{2}\right)!}\\ +\frac{\left({n}^{2}-1\right)n}{12}\sum _{k\le j\le n-2,j-k\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\left(\genfrac{}{}{0}{}{n-2}{j}\right){E}_{n-2-j}\frac{j!}{\left(j+k+2\right)!}×\frac{\left(\frac{j+k+2}{2}\right)!}{\left(\frac{j-k}{2}\right)!}\right\}.\end{array}$
(2.17)

Therefore, by Proposition 2.1 and (2.17), we obtain the following theorem.

Theorem 2.4 For$n\in {\mathbb{Z}}_{+}$, we have
$\begin{array}{c}\sum _{k=0}^{n}{B}_{k}\left(x\right){B}_{n-k}\left(x\right)\hfill \\ \phantom{\rule{1em}{0ex}}=\sum _{k=0}^{n}\left(2k+1\right){2}^{k+1}\left\{\left(n+1\right)\sum _{l=k}^{n}\frac{\left(\genfrac{}{}{0}{}{n}{k}\right)}{n-l+1}\left(\sum _{m=l}^{n}{B}_{m-l}{B}_{n-m}+{B}_{n-1-l}\right)\hfill \\ \phantom{\rule{2em}{0ex}}×\sum _{k\le j\le l,j-k\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\left(\genfrac{}{}{0}{}{l}{j}\right){E}_{l-j}\frac{j!}{\left(j+k+2\right)!}×\frac{\left(\frac{j+k+2}{2}\right)!}{\left(\frac{j-k}{2}\right)!}\hfill \\ \phantom{\rule{2em}{0ex}}+\frac{\left({n}^{2}-1\right)n}{12}\sum _{k\le j\le n-2,j-k\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\left(\genfrac{}{}{0}{}{n-2}{j}\right){E}_{n-2-j}\frac{j!}{\left(j+k+2\right)!}×\frac{\left(\frac{j+k+2}{2}\right)!}{\left(\frac{j-k}{2}\right)!}\right\}{P}_{k}\left(x\right).\hfill \end{array}$
Remark 2.5 The extended Laguerre polynomials are given by
${L}_{n}^{\alpha }\left(x\right)=\sum _{r=0}^{n}\frac{{\left(-1\right)}^{r}}{r!}\left(\genfrac{}{}{0}{}{n+\alpha }{n-r}\right){x}^{r}\phantom{\rule{1em}{0ex}}\left(\alpha >-1\right).$
By the same method, we get
${L}_{n}^{\alpha }\left(x\right)=\sum _{k=0}^{n}\sum _{0\le l\le n-k,l\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\frac{{\left(-1\right)}^{k+l}\left(2k+1\right){2}^{k+1}\left(\genfrac{}{}{0}{}{n+\alpha }{n-k-l}\right)\left(\frac{l+2k+2}{2}\right)!}{\left(l+2k+2\right)!\left(\frac{l}{2}\right)!}{P}_{k}\left(x\right)$
and
${H}_{n}\left(x\right)=\sum _{k=0}^{n}\sum _{0\le l\le n-k,l\equiv 0\phantom{\rule{0.25em}{0ex}}\left(\mathrm{mod}\phantom{\rule{0.25em}{0ex}}2\right)}\frac{\left(2k+1\right){2}^{2k+l+1}n!\left(\frac{l+2k+2}{2}\right)!{H}_{n-k-l}}{\left(n-k-l\right)!\left(l+2k+2\right)!\left(\frac{l}{2}\right)!}{P}_{k}\left(x\right),$

where ${H}_{n}\left(x\right)$ is the Hermite polynomial of degree n (see [7]).

## Declarations

### Acknowledgements

The authors would like to express their sincere gratitude to referee for his/her valuable comments and information. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology 2012R1A1A2003786.

## Authors’ Affiliations

(1)
Department of Mathematics, Sogang University, Seoul, 121-742, Republic of Korea
(2)
Department of Mathematics Education, Kyungpook National University, Taegu, 702-701, Republic of Korea
(3)
Department of Mathematics, Kwangwoon University, Seoul, 139-701, Republic of Korea

## References

1. Carlitz L: Some integrals containing products of Legendre polynomials. Arch. Math. 1961, 12: 334–340. 10.1007/BF01650571
2. Carlitz L: Some congruence properties of the Legendre polynomials. Math. Mag. 1960/1961, 34: 387–390.
3. Carlitz L: Some arithmetic properties of the Legendre polynomials. Acta Arith. 1958, 4: 99–107.
4. Al-Salam WA, Carlitz L: Finite summation formulas and congruences for Legendre and Jacobi polynomials. Monatshefte Math. 1958, 62: 108–118. 10.1007/BF01301283
5. Carlitz L: Some arithmetic properties of the Legendre polynomials. Proc. Camb. Philos. Soc. 1957, 53: 265–268. 10.1017/S0305004100032278
6. Carlitz L: Note on Legendre polynomials. Bull. Calcutta Math. Soc. 1954, 46: 93–95.
7. Carlitz L: Congruence properties of the polynomials of Hermite, Laguerre and Legendre. Math. Z. 1954, 59: 474–483.
8. Ding D, Yang J: Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials. Adv. Stud. Contemp. Math. 2010, 20(1):7–21.
9. Kim G, Kim B, Choi J: The DC algorithm for computing sums of powers of consecutive integers and Bernoulli numbers. Adv. Stud. Contemp. Math. 2008, 17(2):137–145.
10. Kim T: A note on q -Bernstein polynomials. Russ. J. Math. Phys. 2011, 18(1):73–82. 10.1134/S1061920811010080
11. Kim T: Some identities on the q -Euler polynomials of higher order and q -Stirling numbers by the fermionic p -adic integral on ${\mathbb{Z}}_{p}$ . Russ. J. Math. Phys. 2009, 16(4):484–491. 10.1134/S1061920809040037
12. Kim T: Symmetry of power sum polynomials and multivariate fermionic p -adic invariant integral on ${\mathbb{Z}}_{p}$ . Russ. J. Math. Phys. 2009, 16(1):93–96. 10.1134/S1061920809010063
13. Kim T: q -Bernoulli numbers and polynomials associated with Gaussian binomial coefficients. Russ. J. Math. Phys. 2008, 15(1):51–57.
14. Kim, T, Kim, DS, Dolgy, DV, Rim, SH: Some identities on the Euler numbers arising from Euler basis polynomials. ARS Comb. 109 (2013, in press)Google Scholar
15. Kudo A: A congruence of generalized Bernoulli number for the character of the first kind. Adv. Stud. Contemp. Math. 2000, 2: 1–8.
16. Leyendekkers JV, Shannon AG, Wong GCK: Integer structure analysis of the product of adjacent integers and Euler’s extension of Fermat’s last theorem. Adv. Stud. Contemp. Math. 2008, 17(2):221–229.
17. Ozden H, Cangul IN, Simsek Y: Remarks on q -Bernoulli numbers associated with Daehee numbers. Adv. Stud. Contemp. Math. 2009, 18(1):41–48.
18. Rim S-H, Lee SJ: Some identities on the twisted $\left(h,q\right)$ -Genocchi numbers and polynomials associated with q -Bernstein polynomials. Int. J. Math. Math. Sci. 2011., 2011: Article ID 482840Google Scholar
19. Rim SH, Jin JH, Moon EJ, Lee SJ: Some identities on the q -Genocchi polynomials of higher-order and q -Stirling numbers by the fermionic p -adic integral on ${\mathbb{Z}}_{p}$ . Int. J. Math. Math. Sci. 2010., 2010: Article ID 860280Google Scholar
20. Ryoo CS: A note on the Frobenius-Euler polynomials. Proc. Jangjeon Math. Soc. 2011, 14(4):495–501.
21. Ryoo CS: Some identities of the twisted q -Euler numbers and polynomials associated with q -Bernstein polynomials. Proc. Jangjeon Math. Soc. 2011, 14(2):239–248.
22. Ryoo CS: Some relations between twisted q -Euler numbers and Bernstein polynomials. Adv. Stud. Contemp. Math. 2011, 21(2):217–223.
23. Simsek Y, Acikgoz M:A new generating function of $\left(q-\right)$ Bernstein-type polynomials and their interpolation function. Abstr. Appl. Anal. 2010., 2010: Article ID 769095Google Scholar
24. Simsek Y: Generating functions of the twisted Bernoulli numbers and polynomials associated with their interpolation functions. Adv. Stud. Contemp. Math. 2008, 16(2):251–278.
25. Simsek Y:Complete sum of products of $\left(h,q\right)$-extension of Euler polynomials and numbers. J. Differ. Equ. Appl. 2010, 16(11):1331–1348. 10.1080/10236190902813967
26. Zhang Z, Yang H: Some closed formulas for generalized Bernoulli-Euler numbers and polynomials. Proc. Jangjeon Math. Soc. 2008, 11(2):191–198.
27. Acikgoz M, Erdal D, Araci S: A new approach to q -Bernoulli numbers and q -Bernoulli polynomials related to q -Bernstein polynomials. Adv. Differ. Equ. 2010., 2010: Article ID 951764Google Scholar
28. Araci S, Erdal D, Seo J: A study on the fermionic p -adic q -integral representation on ${\mathbb{Z}}_{p}$ associated with weighted q -Bernstein and q -Genocchi polynomials. Abstr. Appl. Anal. 2011., 2011: Article ID 649248Google Scholar
29. Bayad A: Modular properties of elliptic Bernoulli and Euler functions. Adv. Stud. Contemp. Math. 2010, 20(3):389–401.
30. Bayad A, Kim T: Identities for the Bernoulli, the Euler and the Genocchi numbers and polynomials. Adv. Stud. Contemp. Math. 2010, 20(2):247–253.
31. Bayad A, Kim T: Identities involving values of Bernstein, q -Bernoulli, and q -Euler polynomials. Russ. J. Math. Phys. 2011, 18(2):133–143. 10.1134/S1061920811020014