Skip to main content

Inequalities for convex and s-convex functions on Δ = [a, b] × [c, d]

Abstract

In this article, two new lemmas are proved and inequalities are established for co-ordinated convex functions and co-ordinated s-convex functions.

Mathematics Subject Classification (2000): 26D10; 26D15.

1. Introduction

Let f : I be a convex function defined on the interval I of real numbers and a <b. The following double inequality;

f a + b 2 1 b - a a b f ( x ) d x f ( a ) + f ( b ) 2

is well known in the literature as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction if f is concave.

In [1], Orlicz defined s-convex function in the second sense as following:

Definition 1. A function f : +, where + = [0, ∞), is said to be s-convex in the second sense if

f ( α x + β y ) α s f ( x ) + β s f ( y )

for all x, y [0, ∞), α, β ≥ 0 with α + β = 1 and for some fixed s (0, 1]. We denote by K s 2 the class of all s-convex functions.

Obviously one can see that if we choose s = 1, the above definition reduces to ordinary concept of convexity.

For several results related to above definition we refer readers to [210].

In [11], Dragomir defined convex functions on the co-ordinates as following:

Definition 2. Let us consider the bidimensional interval Δ = [a, b] × [c, d] in 2with a <b, c <d. A function f : Δ → will be called convex on the coordinates if the partial mappings f y : [a, b] → , f y (u) = f(u, y) and f x : [c, d] → , f x (v) = f(x, v) are convex where defined for all y [c, d] and x [a, b]. Recall that the mapping f : Δ → is convex on Δ if the following inequality holds,

f ( λ x + ( 1 - λ ) z , λ y + ( 1 - λ ) w ) λ f ( x , y ) + ( 1 - λ ) f ( z , w )

for all (x, y), (z, w) Δ and λ [0, 1].

In [11], Dragomir established the following inequalities of Hadamard-type for co-ordinated convex functions on a rectangle from the plane 2.

Theorem 1. Suppose that f : Δ = [a, b] × [c, d] → is convex on the co-ordinates on Δ. Then one has the inequalities;

f a + b 2 , c + d 2 1 2 1 b - a a b f x , c + d 2 d x + 1 d - c c d f a + b 2 , y d y 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y 1 4 1 ( b - a ) a b f ( x , c ) d x + 1 ( b - a ) a b f ( x , d ) d x + 1 ( d - c ) c d f ( a , y ) d y + 1 ( d - c ) c d f ( b , y ) d y f ( a , c ) + f ( a , d ) + f ( b , c ) + f ( b , d ) 4 .
(1.1)

The above inequalities are sharp.

Similar results can be found in [1214].

In [13], Alomari and Darus defined co-ordinated s-convex functions and proved some inequalities based on this definition. Another definition for co-ordinated s- convex functions of second sense can be found in [15].

Definition 3. Consider the bidimensional interval Δ = [a, b] × [c, d] in [0, ∞)2with a <b and c <d. The mapping f : Δ → is s-convex on Δ if

f ( λ x + ( 1 - λ ) z , λ y + ( 1 - λ ) w ) λ s f ( x , y ) + ( 1 - λ ) s f ( z , w )

holds for all (x, y), (z, w) Δ with λ [0, 1] and for some fixed s (0, 1].

In [16], Sarıkaya et al. proved some Hadamard-type inequalities for co-ordinated convex functions as following:

Theorem 2. Let f : Δ 2 be a partial differentiable mapping on Δ := [a, b] × [c, d] in 2with a <b and c <d. If 2 f t s is a convex function on the co-ordinates on Δ, then one has the inequalities:

J ( b - a ) ( d - c ) 16 × 2 f t s ( a , c ) + 2 f t s ( a , d ) + 2 f t s ( b , c ) + 2 f t s ( b , d ) 4
(1.2)

where

J = f ( a , c ) + f ( a , d ) + f ( b , c ) + f ( b , d ) 4 + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y - A

and

A = 1 2 1 ( b - a ) a b [ f ( x , c ) + f ( x , d ) ] d x + 1 ( d - c ) c d [ f ( a , y ) + f ( b , y ) ] d y .

Theorem 3. Let f : Δ 2 be a partial differ entiable mapping on Δ := [a, b] × [c, d] in 2with a <b and c <d. If 2 f t s q , q > 1, is a convex function on the co-ordinates on Δ, then one has the inequalities:

J ( b - a ) ( d - c ) 4 ( p + 1 ) 2 p × 2 f t s q ( a , c ) + 2 f t s q ( a , d ) + 2 f t s q ( b , c ) + 2 f t s q ( b , d ) 4 1 q
(1.3)

where A, J are as in Theorem 2 and 1 p + 1 q =1.

Theorem 4. Let f : Δ 2 be a partial differentiable mapping on Δ := [a, b] × [c, d] in 2with a <b and c <d. If 2 f t s q , q ≥ 1, is a convex function on the co-ordinates on Δ, then one has the inequalities:

J ( b - a ) ( d - c ) 16 × 2 f t s q ( a , c ) + 2 f t s q ( a , d ) + 2 f t s q ( b , c ) + 2 f t s q ( b , d ) 4 1 q
(1.4)

where A, J are as in Theorem 2.

In [17], Barnett and Dragomir proved an Ostrowski-type inequality for double integrals as following:

Theorem 5. Let f : [a, b] × [c, d] → be continuous on [a, b] × [c, d], f x , y = 2 f x y exists on (a, b) × (c, d) and is bounded, that is

f x , y = sup ( x , y ) ( a , b ) × ( c , d ) 2 f ( x , y ) x y < ,

then we have the inequality;

a b c d f ( s , t ) d t d s - ( b - a ) c d f ( x , t ) d t - ( d - c ) a b f ( s , y ) d s - ( b - a ) ( d - c ) f ( x , y ) ( b - a ) 2 4 + x - a + b 2 2 ( d - c ) 2 4 + y - c + d 2 2 f x , y
(1.5)

for all (x, y) [a, b] × [c, d].

In [18], Sarıkaya proved an Ostrowski-type inequality for double integrals and gave a corollary as following:

Theorem 6. Let f : [a, b] × [c, d] → be an absolutely continuous function such that the partial derivative of order 2 exists and is bounded, i.e.,

2 f ( t , s ) t s = sup ( x , y ) ( a , b ) × ( c , d ) 2 f ( t , s ) t s <

for all (t, s) [a, b] × [c, d]. Then we have,

( β 1 - α 1 ) ( β 2 - α 2 ) f a + b 2 , c + d 2 + H ( α 1 , α 2 , β 1 , β 2 ) + G ( α 1 , α 2 , β 1 , β 2 ) - ( β 2 - α 2 ) a b f t , c + d 2 d t - ( β 1 - α 1 ) c d f a + b 2 , s d s - a b [ ( α 2 - c ) f ( t , c ) + ( d - β 2 ) f ( t , d ) ] d t - c d [ ( α 1 - a ) f ( a , s ) + ( b - β 1 ) f ( b , s ) ] d s + a b c d f ( t , s ) d s d t ( α 1 - a ) 2 + ( b - β 1 ) 2 2 + ( a + b - 2 α 1 ) 2 + ( a + b - 2 β 1 ) 2 8 × ( α 2 - c ) 2 + ( d - β 2 ) 2 2 + ( c + d - 2 α 2 ) 2 + ( c + d - 2 β 2 ) 2 8 2 f ( t , s ) t s
(1.6)

for all (α1, α2), (β1, β2) [a, b] × [c, d] with α1 <β1, α2 <β2where

H ( α 1 , α 2 , β 1 , β 2 ) = ( α 1 - a ) [ ( α 2 - c ) f ( a , c ) + ( d - β 2 ) f ( a , d ) ] + ( b - β 1 ) [ ( α 2 - c ) f ( b , c ) + ( d - β 2 ) f ( b , d ) ]

and

G ( α 1 , α 2 , β 1 , β 2 ) = ( β 1 - α 1 ) ( α 2 - c ) f a + b 2 , c + ( d - β 2 ) f a + b 2 , d + ( β 2 - α 2 ) ( α 1 - a ) f a , c + d 2 + ( b - β 1 ) f b , c + d 2 .

Corollary 1. Under the assumptions of Theorem 6, we have

( b - a ) ( d - c ) f a + b 2 , c + d 2 + a b c d f ( t , s ) d s d t - ( d - c ) a b f t , c + d 2 d t - ( b - a ) c d f a + b 2 , s d s 1 16 2 f ( t , s ) t s ( b - a ) 2 ( d - c ) 2 .
(1.7)

In [19], Pachpatte established a new Ostrowski type inequality similar to inequality (1.5) by using elementary analysis.

The main purpose of this article is to establish inequalities of Hadamard-type for co-ordinated convex functions by using Lemma 1 and to establish some new Hadamard-type inequalities for co-ordinated s-convex functions by using Lemma 2.

2. Inequalities for co-ordinated convex functions

To prove our main results, we need the following lemma which contains kernels similar to Barnett and Dragomir's kernels in [17], (see the article [17, proof of Theorem 2.1]).

Lemma 1. Let f : Δ = [a, b] × [c, d] → be a partial differentiable mapping on Δ = [a, b] × [c, d]. If 2 f t s L ( Δ ) , then the following equality holds:

f a + b 2 , c + d 2 - 1 ( d - c ) c d f a + b 2 , y d y - 1 ( b - a ) a b f x , c + d 2 d x + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d y d x = 1 ( b - a ) ( d - c ) a b c d p ( x , t ) q ( y , s ) 2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d d s d t

where

p ( x , t ) = ( t - a ) , t a , a + b 2 ( t - b ) , t a + b 2 , b

and

q ( y , s ) = ( s - c ) , s c , c + d 2 ( s - d ) , s c + d 2 , d

for each x [a, b] and y [c, d].

Proof. We note that

B = a b c d p ( x , t ) q ( y , s ) 2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d d s d t .

Integration by parts, we can write

B = c d q ( y , s ) [ a a + b 2 ( t a ) 2 f t s ( b t b a a + t a b a b , d s d c c + s c d c d ) d t + a + b 2 b ( t b ) 2 f t s ( b t b a a + t a b a b , d s d c c + s c d c d ) d t ] d s = c d q ( y , s ) { [ ( t a ) f s ( b t b a a + t a b a b , d s d c c + s c d c d ) ] a a + b 2 a a + b 2 f s ( b t b a a + t a b a b , d s d c c + s c d c d ) d t + [ ( t b ) f s ( b t b a a + t a b a b , d s d c c + s c d c d ) ] a + b 2 b a + b 2 b f s ( b t b a a + t a b a b , d s d c c + s c d c d ) d t } d s = ( b a ) c d q ( y , s ) { f s ( a + b 2 , d s d c c + s c d c d ) a b f s ( b t b a a + t a b a b , d s d c c + s c d c d ) d t } d s = ( b a ) { c c + d 2 ( s c ) f s ( a + b 2 , d s d c c + s c d c d ) d s + c + d 2 d ( s d ) f s ( a + b 2 , d s d c c + s c d c d ) d s a b [ c c + d 2 ( s c ) f s ( b t b a a + t a b a b , d s d c c + s c d c d ) d s + c + d 2 d ( s d ) f s ( b t b a a + t a b a b , d s d c c + s c d c d ) d s ] d t } .

By calculating the above integrals, we have

B = ( b - a ) ( d - c ) f a + b 2 , c + d 2 - ( b - a ) c d f a + b 2 , d - s d - c c + s - c d - c d d s - ( d - c ) a b f b - t b - a a + t - a b - a b , c + d 2 d t a b c d f b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d d s d t .

Using the change of the variable x= b - t b - a a+ t - a b - a b and y= d - s d - c c+ s - c d - c d, then dividing both sides with (b - a) × (d - c), this completes the proof.

Theorem 7. Let f : Δ = [a, b] × [c, d] → be a partial differentiable mapping on Δ = [a, b] × [c, d]. If 2 f t s is a convex function on the co-ordinates on Δ, then the following inequality holds;

f a + b 2 , c + d 2 - 1 ( d - c ) c d f a + b 2 , y d y - 1 ( b - a ) a b f x , c + d 2 d x + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d y d x ( b - a ) ( d - c ) 64 2 f t s ( a , c ) + 2 f t s ( b , c ) + 2 f t s ( a , d ) + 2 f t s ( b , d ) .

Proof. We note that

C = f a + b 2 , c + d 2 - 1 ( d - c ) c d f a + b 2 , y d y - 1 ( b - a ) a b f x , c + d 2 d x + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d y d x .

From Lemma 1 and using the property of modulus, we have

C 1 ( b - a ) ( d - c ) × a b c d p ( x , t ) q ( y , s ) 2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d d s d t

Since 2 f t s is co-ordinated convex, we can write

C 1 ( b - a ) ( d - c ) × c d q ( y , s ) a a + b 2 ( t - a ) b - t b - a 2 f t s a , d - s d - c c + s - c d - c d d t + a a + b 2 ( t - a ) t - a b - a 2 f t s b , d - s d - c c + s - c d - c d d t + a + b 2 b ( b - t ) b - t b - a 2 f t s a , d - s d - c c + s - c d - c d d t + a + b 2 b ( b - t ) t - a b - a 2 f t s b , d - s d - c c + s - c d - c d d t d s .

By computing these integrals, we obtain

C ( b - a ) 8 ( d - c ) c d q ( y , s ) 2 f t s a , d - s d - c c + s - c d - c d + c d q ( y , s ) 2 f t s b , d - s d - c c + s - c d - c d d s .

Using co-ordinated convexity of 2 f t s again, we get

| C | ( b a 8 ( d c ) × { c c + d 2 ( s c ) [ d s d c | 2 f r s ( a , c ) | ] d s + c c + d 2 ( s c ) [ s c d c | 2 f t s ( a , d ) | ] d s + c + d 2 d ( d s ) [ d s d c | 2 f t s ( a , c ) | ] d s + c + d 2 d ( d s ) [ s c d c | 2 f t s ( a , d ) | ] d s + c c + d 2 ( s c ) [ d s d c | 2 f t s ( b , c ) | ] d s + d c + d 2 ( s c ) [ s c d c | 2 f t s ( b , d ) | ] d s + c + d 2 d ( d s ) [ d s d c | 2 f t s ( b , c ) | ] d s + c + d 2 d ( d s ) [ s c d c | 2 f t s ( b , d ) | ] d s } .

By a simple computation, we get the required result.

Remark 1. Suppose that all the assumptions of Theorem 7 are satisfied. If we choose 2 f t s is bounded, i.e.,

2 f ( t , s ) t s = sup ( t , s ) ( a , b ) × ( c , d ) 2 f ( t , s ) t s < ,

we get

C ( b - a ) ( d - c ) 16 2 f ( t , s ) t s
(2.1)

which is the inequality in (1.7).

Theorem 8. Let f : Δ = [a, b] × [c, d] → bea partial differentiable mapping on Δ = [a, b] × [c, d]. If 2 f t s q , q > 1, is a convex function on the co-ordinates on Δ, then the following inequality holds;

C ( b - a ) ( d - c ) 4 ( p + 1 ) 2 p × 2 f t s ( a , c ) q + 2 f t s ( b , c ) q + 2 f t s ( a , d ) q + 2 f t s ( b , d ) q 4 1 q
(2.2)

where C is in the proof of Theorem 7.

Proof. From Lemma 1, we have

C 1 ( b - a ) ( d - c ) x a b c d p ( x , t ) q ( y , s ) 2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d d s d t .

By applying the well-known Hölder inequality for double integrals, then one has

C 1 ( b - a ) ( d - c ) a b c d p ( x , t ) q ( y , s ) p d t d s 1 p × a b c d 2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d q d s d t 1 q .
(2.3)

Since 2 f t s q is co-ordinated convex function on Δ, we can write

2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d q b - t b - a d - s d - c 2 f t s ( a , c ) q + b - t b - a s - c d - c 2 f t s ( a , d ) q + t - a b - a d - s d - c 2 f t s ( b , c ) q + t - a b - a s - c d - c 2 f t s ( b , d ) q .
(2.4)

Using the inequality (2.4) in (2.3), we get

C ( b - a ) ( d - c ) 4 ( p + 1 ) 2 p × 2 f t s ( a , c ) q + 2 f t s ( b , c ) q + 2 f t s ( a , d ) q + 2 f t s ( b , d ) q 4 1 q

where we have used the fact that

a b c d p ( x , t ) q ( y , s ) p d t d s 1 p = [ ( b - a ) ( d - c ) ] 1 + 1 p 4 ( p + 1 ) 2 p .

This completes the proof.

Remark 2. Suppose that all the assumptions of Theorem 8 are satisfied. If we choose 2 f t s is bounded, i.e.,

2 f ( t , s ) t s = sup ( t , s ) ( a , b ) × ( c , d ) 2 f ( t , s ) t s < ,

we get

C ( b - a ) ( d - c ) 4 ( p + 1 ) 2 p 2 f ( t , s ) t s
(2.5)

which is the inequality in (1.3) with 2 f ( t , s ) t s .

Theorem 9. Let f : Δ = [a, b] × [c, d] → bea partial differentiable mapping on Δ = [a, b] × [c, d]. If 2 f t s q , q > 1, is a convex function on the co-ordinates on Δ, then the following inequality holds;

C ( b - a ) ( d - c ) 16 × 2 f t s ( a , c ) q + 2 f t s ( b , c ) q + 2 f t s ( a , d ) q + 2 f t s ( b , d ) q 4 1 q
(2.6)

where C is in the proof of Theorem 7.

Proof. From Lemma 1 and applying the well-known Power mean inequality for double integrals, then one has

C 1 ( b - a ) ( d - c ) × a b c d p ( x , t ) q ( y , s ) 2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d d s d t 1 ( b - a ) ( d - c ) a b c d p ( x , t ) q ( y , s ) d s d t 1 - 1 q × a b c d p ( x , t ) q ( y , s ) 2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d q d s d t 1 q .
(2.7)

Since 2 f t s q is co-ordinated convex function on Δ, we can write

2 f t s b - t b - a a + t - a b - a b , d - s d - c c + s - c d - c d q b - t b - a d - s d - c 2 f t s ( a , c ) q + b - t b - a s - c d - c 2 f t s ( a , d ) q + t - a b - a d - s d - c 2 f t s ( b , c ) q + t - a b - a s - c d - c 2 f t s ( b , d ) q .
(2.8)

If we use (2.8) in (2.7), we get

C 1 ( b - a ) ( d - c ) a b c d p ( x , t ) q ( y , s ) d s d t 1 - 1 q × a b c d p ( x , t ) q ( y , s ) b - t b - a d - s d - c 2 f t s ( a , c ) q + b - t b - a s - c d - c 2 f t s ( a , d ) q + t - a b - a d - s d - c 2 f t s ( b , c ) q + t - a b - a s - c d - c 2 f t s ( b , d ) q 1 q .

Computing the above integrals and using the fact that

a b c d p ( x , t ) q ( y , s ) d t d s 1 - 1 q = ( b - a ) 2 ( d - c ) 2 16 1 - 1 q ,

we obtained the desired result.

3. Inequalities for co-ordinated s-convex functions

To prove our main results we need the following lemma:

Lemma 2. Let f : Δ 2 be an absolutely continuous function on Δ where a <b, c <d and t, λ [0, 1], if 2 f t λ L ( Δ ) , then the following equality holds:

D = ( b - a ) ( d - c ) ( r 1 + 1 ) ( r 2 + 1 ) × E

where

D = f ( a , c ) + r 2 f ( a , d ) + r 1 f ( b , c ) + r 1 r 2 f ( b , d ) ( r 1 + 1 ( r 2 + 1 ) + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y - r 1 r 1 + 1 1 d - c c d f ( b , y ) d y - 1 r 1 + 1 1 d - c c d f ( a , y ) d y - r 2 r 2 + 1 1 b - a a b f ( x , d ) d x - 1 r 2 + 1 1 b - a a b f ( x , c ) d x

and

E = 0 1 0 1 ( ( r 1 + 1 ) t - 1 ) ( ( r 2 + 1 ) λ - 1 ) 2 f t λ ( t b + ( 1 - t ) a , λ d + ( 1 - λ ) c ) d t d λ

for some fixed r1, r2 [0, 1].

Proof. Integration by parts, we get

E = 0 1 ( ( r 2 + 1 ) λ 1 ) × [ 0 1 ( ( r 1 + 1 ) t 1 ) 2 f t λ ( t b + ( 1 t ) a , λ d + ( 1 λ ) c ) d t ] d λ = 0 1 ( ( r 2 + 1 ) λ 1 ) [ ( ( r 1 + 1 ) t 1 ) ( b a ) f λ ( t b + ( 1 t ) a , λ d + ( 1 λ ) c ) | 0 1 r 1 + 1 b a 0 1 f λ ( t b + ( 1 t ) a , λ d + ( 1 λ ) c ) d t ] d λ = 0 1 ( ( r 2 + 1 ) λ 1 [ r 1 b a f λ ( b , λ d + ( 1 λ ) c ) + 1 b a f λ ( a , λ d + ( 1 λ ) c ) r 1 + 1 b a 0 1 f λ ( t b + ( 1 t ) a , λ d + ( 1 λ ) c ) d t ] d λ = r 1 b a ( ( r 2 + 1 ) λ 1 d c f ( b , λ d + ( 1 λ ) c ) | 0 1 r 1 ( r 2 + 1 ) ( b a ) ( d c ) 0 1 f ( b , λ d + ( 1 λ ) c ) d λ + 1 b a ( ( r 2 + 1 ) λ 1 d c f ( a , λ d + ( 1 λ ) c ) | 0 1 ( r 2 + 1 ) ( b a ) ( d c ) 0 1 f ( a , λ d + ( 1 λ ) c ) d λ r 1 + 1 b a 0 1 [ 0 1 ( ( r 2 + 1 ) λ 1 ) f λ ( t b + ( 1 t ) a , λ d + ( 1 λ ) c ) d λ ] d t .

Computing these integrals, we obtain

E = 1 ( b - a ) ( d - c ) [ f ( a , c ) + r 2 f ( a , d ) + r 1 f ( b , c ) + r 1 r 2 f ( b , d ) - r 1 ( r 2 + 1 ) 0 1 f ( b , λ d + ( 1 - λ ) c ) d λ - ( r 2 + 1 ) 0 1 f ( a , λ d + ( 1 - λ ) c ) d λ - r 2 ( r 1 + 1 ) 0 1 f ( t b + ( 1 - t ) a , d ) d t - ( r 1 + 1 ) 0 1 f ( t b + ( 1 - t ) a , c ) d t + ( r 1 + 1 ) ( r 2 + 1 ) 0 1 0 1 f ( t b + ( 1 - t ) a , λ d + ( 1 - λ ) c ) d t d λ .

Using the change of the variable x = tb + (1 - t) a and y = λd + (1 - λ) c for t, λ [0, 1] and multiplying the both sides by ( b a ) ( d c ) ( r 1 + 1 ( r 2 + 1 ) , we get the required result.

Theorem 10. Let f : Δ = [a, b] × [c, d] [0, ∞)2 → [0, ∞) be an absolutely continuous function on Δ. If 2 f t λ is s-convex function on the co-ordinates on Δ, then one has the inequality:

D | ( b - a ) ( d - c ) ( r 1 + 1 ) ( r 2 + 1 ) ( s + 1 ) 2 ( s + 2 ) 2 × M S 2 f t λ ( a , c ) + M L 2 f t λ ( a , d ) + K R 2 f t λ ( b , c ) + K N 2 f t λ ( b , d )
(3.1)

where

M = s + 1 + 2 ( r 1 + 1 ) r 1 r 1 + 1 s + 2 - r 1 N = 1 ( r 2 + 1 ) s + 1 L = r 2 ( s + 1 ) + 1 ( r 2 + 1 ) s + 1 - 1 R = s + 1 + r 2 r 2 r 2 + 1 s + 1 - r 2 S = r 2 r 2 r 2 + 1 s + 1

Proof. From Lemma 2 and by using co-ordinated s-convexity of 2 f t λ , we have;

D ( b - a ) ( d - c ) ( r 1 + 1 ) ( r 2 + 1 ) × 0 1 0 1 ( ( r 1 + 1 ) t - 1 ) ( ( r 2 + 1 ) λ - 1 ) 2 f t λ ( t b + ( 1 - t ) a , λ d + ( 1 - λ ) c ) d t d λ ( b - a ) ( d - c ) ( r 1 + 1 ) ( r 2 + 1 ) × 0 1 0 1 ( ( r 1 + 1 ) t - 1 ) ( ( r 2 + 1 ) λ - 1 ) t s 2 f t λ ( b , λ d + ( 1 - λ ) c ) + ( 1 - t ) s 2 f t λ ( a , λ d + ( 1 - λ ) c ) d t d λ .

By calculating the above integrals, we have

0 1 ( ( r 1 + 1 ) t - 1 ) t s 2 f t λ ( b , λ d + ( 1 - λ ) c ) + ( 1 - t ) s 2 f t λ ( a , λ d + ( 1 - λ ) c ) d t = 0 1 r 1 + 1 ( 1 - ( r 1 + 1 ) t ) t s 2 f t λ ( b , λ d + ( 1 - λ ) c ) + ( 1 - t ) s 2 f t λ ( a , λ d + ( 1 - λ ) c ) d t + 1 r 1 + 1 1 ( ( r 1 + 1 ) t - 1 ) t 2 2 f t λ ( b , λ d + ( 1 - λ ) c ) + ( 1 - t ) s 2 f t λ ( a , λ d + ( 1 - λ ) c ) d t = 1 ( s + 1 ) ( s + 2 ) r 1 ( s + 1 ) + 2 1 r 1 + 1 s + 1 - 1 2 f t λ ( b , λ d + ( 1 - λ ) c ) + s + 1 + 2 ( r 1 + 1 ) r 1 r 1 + 1 s + 2 - r 1 2 f t λ ( a , λ d + ( 1 - λ ) c ) .
(3.2)

By a similar argument for other integrals, by using co-ordinated s-convexity of 2 f t λ , we get

0 1 ( ( r 2 + 1 ) λ - 1 ) 2 f t λ ( b , λ d + ( 1 - λ ) c ) + 2 f t λ ( a , λ d + ( 1 - λ ) c ) d λ 0 1 r 2 + 1 ( 1 - ( r 2 + 1 ) λ ) λ s 2 f t λ ( b , d ) + ( 1 - λ ) s 2 f t λ ( b , c ) d λ + 1 r 2 + 1 1 ( ( r 2 + 1 ) λ - 1 ) λ s 2 f t λ ( a , d ) + ( 1 - λ ) s 2 f t λ ( a , c ) d λ = 1 ( s + 1 ) ( s + 2 ) 1 ( r 2 + 1 ) s + 1 2 f t λ ( b , d ) + r 2 ( s + 1 ) + 1 ( r 2 + 1 ) s + 1 - 1 2 f t f ( a , d ) + s - r 2 + 1 + r 2 r 2 r 2 + 1 s + 1 2 f t f ( b , c ) + r 2 r 2 r 2 + 1 s + 1 2 f t f ( a , c ) .

By using these in (3.2), we obtain the inequality (3.1).

Corollary 2

  1. (1)

    If we choose r 1 = r 2 = 1 in (3.1), we have

    f ( a , c ) + f ( a , d ) + f ( b , c ) + f ( b , d ) 4 - 1 2 1 d - c c d [ f ( b , y ) + f ( a , y ) ] d y - 1 2 1 b - a a b [ f ( x , d ) + f ( x , c ) ] d x + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y ( b - a ) ( d - c ) 4 ( s + 1 ) 2 ( s + 2 ) 2 s + 1 2 s 2 × 1 2 s + 1 2 f t λ ( a , c ) + 2 f t λ ( b , d ) + s + 1 2 s + 1 2 f t λ ( a , d ) + 2 f t λ ( b , c ) .
    (3.3)
  2. (2)

    If we choose r 1 = r 2 = 0 in (3.1), we have

    f ( a , c ) - 1 d - c c d f ( a , y ) d y - 1 b - a a b f ( x , c ) d x + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y ( b - a ) ( d - c ) ( s + 1 ) 2 ( s + 2 ) 2 × ( s + 1 ) 2 f t λ ( b , c ) + 2 f t λ ( b , d ) .

Theorem 11. Let f : Δ = [a, b] × [c, d] [0, ∞)2 → [0, ∞) be an absolutely continuous function on Δ. If 2 f t λ p p - 1 is s-convex function on the co-ordinates on Δ, for some fixed s (0, 1] and p > 1, then one has the inequality:

D ( b - a ) ( d - c ) ( r 1 + 1 ) ( r 2 + 1 ) 1 + r 1 p + 1 1 p 1 + r 2 p + 1 1 p ( r 1 + 1 ) 1 p ( r 2 + 1 ) 1 p ( p + 1 ) 2 p × 2 f t λ q ( a , c ) + 2 f t λ q ( a , d ) + 2 f t λ q ( b , c ) + 2 f t λ q ( b , d ) ( s + 1 ) 2 1 q
(3.4)

for some fixed r1, r2 [0, 1], whereq= p p - 1 .

Proof. From Lemma 2 and using the Hölder inequality for double integrals, we can write

| D | ( b a ) ( d c ) ( r 1 + 1 ) ( r 2 + 1 ) ( 0 1 0 1 | ( ( r 1 + 1 ) t 1 ) ( ( r 2 + 1 ) λ 1 ) | p d t d λ ) 1 p × ( 0 1 0 1 | 2 f t λ ( t b + ( 1 t ) a , λ d + ( 1 λ ) c | q d t d λ ) 1 q .

In above inequality using the s-convexity on the co-ordinates of 2 f t λ q on Δ and calculating the integrals, then we get the desired result.

Corollary 3

  1. (1)

    Under the assumptions of Theorem 11, if we choose r 1 = r 2 = 1 in (3.4), we have

    f ( a , c ) + f ( a , d ) + f ( b , c ) + f ( b , d ) 4 - 1 2 1 d - c c d [ f ( b , y ) + f ( a , y ) ] d y + 1 b - a a b [ f ( x , d ) + f ( x , c ) ] d x + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y ( b - a ) ( d - c ) 4 ( p + 1 ) 2 p × 2 f t λ q ( a , c ) + 2 f t λ q ( a , d ) + 2 f t λ q ( b , c ) + 2 f t λ q ( b , d ) ( s + 1 ) 2 1 q .
    (3.5)
  2. (2)

    Under the assumptions of Theorem 11, if we choose r 1 = r 2 = 0 in (3.4), we have

    f ( a , c ) - 1 d - c c d f ( a , y ) d y - 1 b - a a b f ( x , c ) d x + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y = ( b - a ) ( d - c ) ( p + 1 ) 2 p × 2 f t λ q ( a , c ) + 2 f t λ q ( a , d ) + 2 f t λ q ( b , c ) + 2 f t λ q ( b , d ) ( s + 1 ) 2 1 q .

Remark 4. If we choose s = 1 in (3.5), we obtain the inequality in (1.3)

Theorem 12. Let f : Δ = [a, b] × [c, d] [0, ∞)2 → [0, ∞) be an absolutely continuous function on Δ. If 2 f t λ q is s-convex function on the co-ordinates on Δ, for some fixed s (0, 1] and q ≥ 1, then one has the inequality:

D ( b - a ) ( d - c ) ( r 1 + 1 ) ( r 2 + 1 ) ( 1 + r 1 2 ) ( 1 + r 2 2 ) 4 ( r 1 + 1 ) ( r 2 + 1 ) 1 - 1 q × M S 2 f t λ ( a , c ) q + M L 2 f t λ ( a , d ) q + K R 2 f t λ ( b , c ) q + K N 2 f t λ ( b , d ) q ( s + 1 ) 2 ( s + 2 ) 2 1 q

for some fixed r1, r2 [0, 1].

Proof. From Lemma 2 and using the well-known Power-mean inequality, we can write

D ( b - a ) ( b - c ) ( r 1 + 1 ) ( r 2 + 1 ) 0 1 0 1 ( ( r 1 + 1 ) t - 1 ) ( ( r 2 + 1 ) λ - 1 ) d t d λ 1 - 1 q × 0 1 0 1 ( ( r 1 + 1 ) t - 1 ) ( ( r 2 + 1 ) λ - 1 ) 2 f t λ ( t b + ( 1 - t ) a , λ d + ( 1 - λ ) c ) q d t d λ 1 q .

Since 2 f t λ q is s-convex function on the co-ordinates on Δ, we have

| 2 f t λ ( t b + ( 1 t ) a , λ d + ( 1 λ ) c | q t s | 2 f t λ ( b , λ d + ( 1 λ ) c ) | q + ( 1 t ) s | 2 f t λ ( a , λ d + ( 1 λ ) c ) | q

and

| 2 f t λ ( t b + ( 1 t ) a , λ d + ( 1 λ ) c | q t s λ s | 2 f t λ | q ( b , d ) + t s ( 1 λ ) s | 2 f t λ | q ( b , c ) + λ s ( 1 t ) s | 2 f t λ | q ( a , d ) + ( 1 λ ) s ( 1 t ) s | 2 f t λ | q ( a , c )

hence, it follows that

D ( b - a ) ( d - c ) ( r 1 + 1 ) ( r 2 + 1 ) ( 1 + r 1 2 ) ( 1 + r 2 2 ) 4 ( r 1 + 1 ) ( r 2 + 1 ) 1 - 1 q × 0 1 0 1 ( ( r 1 + 1 ) t - 1 ) ( ( r 2 + 1 ) λ - 1 ) t s λ s 2 f t λ q ( b , d ) + t s ( 1 - λ ) s 2 f t λ q ( b , c ) + λ s ( 1 - t ) s 2 f t λ q ( a , d ) + ( 1 - λ ) s ( 1 - t ) s 2 f t λ q ( a , c ) d t d λ 1 q
(3.6)

By a simple computation, one can see that

× 0 1 0 1 ( ( r 1 + 1 ) t - 1 ) ( ( r 2 + 1 ) λ - 1 ) t s λ s 2 f t λ q ( b , d ) + t s ( 1 - λ ) s 2 f t λ q ( b , c ) + λ s ( 1 - t ) s 2 f t λ q ( a , d ) + ( 1 - λ ) s ( 1 - t ) s 2 f t λ q ( a , c ) d t d λ 1 q = M S 2 f t λ ( a , c ) q + M L 2 f t λ ( a , d ) q + K R 2 f t λ ( b , c ) q + K N 2 f t λ ( b , d ) q ( s + 1 ) 2 ( s + 2 ) 2 1 q

where K, L, M, N, R, and S as in Theorem 10. By substituting these in (3.6) and simplifying we obtain the required result.

Corollary 4

  1. (1)

    Under the assumptions of Theorem 12, if we choose r 1 = r 2 = 1, we have

    f ( a , c ) + f ( a , d ) + f ( b , c ) + f ( b , d ) 4 - 1 2 1 d - c c d f ( b , y ) + f ( a , y ) d y + 1 b - a a b f ( x , d ) + f ( x , c ) d x + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y ( b - a ) ( d - c ) 4 1 4 1 - 1 q s + 1 2 s 1 q × 1 2 s + 1 2 f t λ ( a , c ) q + 2 f t λ ( b , d ) q + s + 1 2 s + 1 2 f t λ ( a , d ) q + 2 f t λ ( b , c ) q ( s + 1 ) 2 ( s + 2 ) 2 1 q
  2. (2)

    Under the assumptions of Theorem 12, if we choose r 1 = r 2 = 0, we have

    f ( a , c ) + 1 ( b - a ) ( d - c ) a b c d f ( x , y ) d x d y - 1 d - c c d f ( a , y ) d y - 1 b - a a b f ( x , c ) d x ( b - a ) ( d - c ) 1 4 1 - 1 q × ( s + 1 ) 2 f t λ ( b , c ) q + 2 f t λ ( b , d ) q ( s + 1 ) 2 ( s + 2 ) 2 1 q

Remark 5. Under the assumptions of Theorem 1.2., if we choose r1 = r2 = 1 and s = 1, we get the inequality in (1.4).

References

  1. Orlicz W: A note on modular spaces-I. Bull Acad Polon Sci Math Astronom Phys 1961, 9: 157–162.

    MathSciNet  Google Scholar 

  2. Hudzik H, Maligranda L: Some remarks on s -convex functions. Aequationes Math 1994, 48: 100–111. 10.1007/BF01837981

    Article  MathSciNet  Google Scholar 

  3. Dragomir SS, Fitzpatrick S: The Hadamard's inequality for s -convex functions in the second sense. Demonstratio Math 1999, 32(4):687–696.

    MathSciNet  Google Scholar 

  4. Kırmacı US, Bakula MK, Özdemir ME, Pečarić J: Hadamard-type inequalities for s -convex functions. Appl Math Comput 2007, 193: 26–35. 10.1016/j.amc.2007.03.030

    Article  MathSciNet  Google Scholar 

  5. Burai P, Házy A, Juhász T: Bernstein-Doetsch type results for s -convex functions. Publ Math Debrecen 2009, 75(1–2):23–31.

    MathSciNet  Google Scholar 

  6. Burai P, Házy A, Juhász T: On approximately Breckner s -convex functions. Control Cybern, in press.

  7. Breckner WW: Stetigkeitsaussagen für eine klasse verallgemeinerter konvexer funktionen in topologischen linearen räumen. In Publ Inst Math. Volume 23. Beograd; 1978:13–20.

    Google Scholar 

  8. Breckner WW, Orbán G: Continuity Properties of Rationally s -convex Mappings with Values in Ordered Topological Linear Space. "Babes-Bolyai" University, Kolozsvar; 1978.

    Google Scholar 

  9. Pinheiro MR: Exploring the concept of s -convexity. Aequationes Math 2007, 74(3):201–209. 10.1007/s00010-007-2891-9

    Article  MathSciNet  Google Scholar 

  10. Pycia M: A direct proof of the s -Hölder continuity of Breckner s -convex functions. Aequationes Math 2001, 61: 128–130. 10.1007/s000100050165

    Article  MathSciNet  Google Scholar 

  11. Dragomir SS: On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J Math 2001, 5: 775–788.

    MathSciNet  Google Scholar 

  12. Bakula MK, Pečarić J: On the Jensen's inequality for convex functions on the co-ordinates in a rectangle from the plane. Taiwanese J Math 2006, 5: 1271–1292.

    Google Scholar 

  13. Alomari M, Darus M: The Hadamard's inequality for s -convex functions of 2-variables. Int J Math Anal 2008, 2(13):629–638.

    MathSciNet  Google Scholar 

  14. Özdemir ME, Set E, Sarıkaya MZ: Some new Hadamard's type inequalities for co-ordinated m -convex and ( α, m )-convex functions. Hacettepe J Math Ist 2011, 40: 219–229.

    Google Scholar 

  15. Alomari M, Darus M: Hadamard-type inequalities for s -convex functions. Int Math Forum 2008, 3(40):1965–1975.

    MathSciNet  Google Scholar 

  16. Sarıkaya MZ, Set E, EminÖzdemir M, Dragomir SS: New some Hadamard's type inequalities for co-ordinated convex functions. Tamsui Oxford J Math Sci 2011.

    Google Scholar 

  17. Barnett NS, Dragomir SS: An Ostrowski type inequality for double integrals and applications for cubature formulae. Soochow J Math 2001, 27(1):1–10.

    MathSciNet  Google Scholar 

  18. Sarıkaya MZ: On the Ostrowski type integral inequality for double integral.[http://arxiv.org/abs/1005.0454v1]

  19. Pachpatte BG: A new Ostrowski type inequality for double integrals. Soochow J Math 2006, 32(2):317–322.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Havva Kavurmaci.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

HK, AOA and MA carried out the design of the study and performed the analysis. MEO (adviser) participated in its design and coordination. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Özdemir, M.E., Kavurmaci, H., Akdemir, A.O. et al. Inequalities for convex and s-convex functions on Δ = [a, b] × [c, d]. J Inequal Appl 2012, 20 (2012). https://doi.org/10.1186/1029-242X-2012-20

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-20

Keywords