# Weighted composition followed and proceeded by differentiation operators from ${Q}_{k}\left(p,q\right)$ spaces to Bloch-type spaces

## Abstract

In this paper, we investigate boundedness and compactness of the weighted composition followed and proceeded by differentiation operators from ${Q}_{k}\left(p,q\right)$ spaces to Bloch-type spaces and little Bloch-type spaces. Some sufficient and necessary conditions for the boundedness and compactness of these operators are obtained.

MSC:47B38, 30D45.

## 1 Introduction

Let Δ be an open unit disc in the complex plane, and let $H\left(\mathrm{\Delta }\right)$ be the class of all analytic functions on Δ. The α-Bloch space ${B}^{\alpha }$ ($\alpha >0$) is, by definition, the set of all function f in $H\left(\mathrm{\Delta }\right)$ such that

${\parallel f\parallel }_{{B}^{\alpha }}=|f\left(0\right)|+\underset{z\in \mathrm{\Delta }}{sup}{\left(1-{|z|}^{2}\right)}^{\alpha }|{f}^{\prime }\left(z\right)|<\mathrm{\infty }.$

Under the above norm, ${B}^{\alpha }$ is a Banach space. When $\alpha =1$, ${B}^{1}=B$ is the well-known Bloch space. Let ${B}_{0}^{\alpha }$ denote the subspace of ${B}^{\alpha }$, for f

This space is called a little α-Bloch space.

Assume that μ is a positive continuous function on $\left[0,1\right)$, having the property that there exist positive numbers s and t, $0, and $\delta \in \left[0,1\right)$, such that

Then μ is called a normal function (see ).

Denote (see, e.g., [2, 4, 10])

${B}_{\mu }=\left\{f:{\parallel f\parallel }_{{B}_{\mu }}=|f\left(0\right)|+\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|{f}^{\prime }\left(z\right)|<\mathrm{\infty },f\in H\left(\mathrm{\Delta }\right)\right\}.$

It is known that ${B}_{\mu }$ is a Banach space with the norm ${\parallel \cdot \parallel }_{{B}_{\mu }}$ (see ).

Let ${B}_{\mu ,0}$ denote the subspace of ${B}_{\mu }$, i.e.,

This space is called a little Bloch-type space. When $\mu \left(r\right)={\left(1-{r}^{2}\right)}^{\alpha }$, the induced space ${B}_{\mu }$ becomes the α-Bloch space ${B}^{\alpha }$.

Throughout this paper, we assume that K is a right continuous and nonnegative nondecreasing function. For $0, $-2, we say that a function $f\in H\left(\mathrm{\Delta }\right)$ belongs to the space ${Q}_{k}\left(p,q\right)$ (see, ), if

$\parallel f\parallel ={\left\{\underset{z\in \mathrm{\Delta }}{sup}{\int }_{\mathrm{\Delta }}{|{f}^{\prime }\left(z\right)|}^{p}{\left(1-{|z|}^{2}\right)}^{q}K\left(g\left(z,a\right)\right)\phantom{\rule{0.2em}{0ex}}dA\left(z\right)\right\}}^{\frac{1}{p}}<\mathrm{\infty },$

where dA denotes the normalized Lebesgue area measure on Δ, $g\left(z,a\right)$ is the Green function with logarithmic singularity at a, that is, $g\left(z,a\right)=log\frac{1}{|{\phi }_{a}\left(z\right)|}$, where ${\phi }_{a}\left(z\right)=\frac{a-z}{1-\overline{a}z}$ for $a\in \mathrm{\Delta }$. When $K\left(x\right)={x}^{s}$, $s\ge 0$, the space ${Q}_{k}\left(p,q\right)$ equals to $F\left(p,q,s\right)$, which is introduced by Zhao in . Moreover (see ), we have that $F\left(p,q,s\right)={B}^{\frac{q+2}{p}}$ and ${F}_{0}\left(p,q,s\right)={B}_{0}^{\frac{q+2}{p}}$ for $s>1$, $F\left(p,q,s\right)\subseteq {B}^{\frac{q+2}{p}}$ and ${F}_{0}\left(p,q,s\right)\subseteq {B}_{0}^{\frac{q+2}{p}}$ for $0\le s<1$. When $p\ge 1$, ${Q}_{k}\left(p,q\right)$ is a Banach space with the norm

${\parallel f\parallel }_{{Q}_{k}\left(p,q\right)}=|f\left(0\right)|+\parallel f\parallel .$

From , we know that ${Q}_{k}\left(p,q\right)\subseteq {B}^{\frac{q+2}{p}}$, ${Q}_{k}\left(p,q\right)={B}^{\frac{q+2}{p}}$ if and only if

${\int }_{0}^{1}K\left(log\frac{1}{r}\right){\left(1-{r}^{2}\right)}^{-2}r\phantom{\rule{0.2em}{0ex}}dr<\mathrm{\infty }.$

Moreover, ${\parallel f\parallel }_{{B}^{\frac{q+2}{p}}}\le C{\parallel f\parallel }_{{Q}_{k}\left(p,q\right)}$ (see , Theorem 2.1]).

Throughout the paper, we assume that

${\int }_{0}^{1}K\left(log\frac{1}{r}\right){\left(1-{r}^{2}\right)}^{q}r\phantom{\rule{0.2em}{0ex}}dr<\mathrm{\infty },$

otherwise ${Q}_{k}\left(p,q\right)$ consists only of constant functions (see ).

Let φ be a nonconstant analytic self-map of Δ, and let ϕ be an analytic function in Δ. We define the linear operators

They are called weighted composition followed and proceeded by differentiation operators respectively, where ${C}_{\phi }$ and D are composition and differentiation operators respectively. The boundedness and compactness of $D{C}_{\phi }$ on the Hardy spaces were investigated by Hibschweiler and Portnoy in  and by Ohno in . In , Li and Stević studied the boundedness and compactness of the operator $D{C}_{\phi }$ on the α-Bloch spaces. In , Li and Stević studied the boundedness and compactness of the composition and differentiation operators between ${H}^{\mathrm{\infty }}$ and α-Bloch spaces. In , Yang studied the boundedness and compactness of the operator $D{C}_{\phi }$ (or ${C}_{\phi }D$) from ${Q}_{k}\left(p,q\right)$ to the Bloch-type spaces.

In this paper, we investigate the operators $\varphi D{C}_{\phi }$ and $\varphi {C}_{\phi }D$ from ${Q}_{k}\left(p,q\right)$ spaces to Bloch-type spaces and little Bloch-type spaces. Some sufficient and necessary conditions for the boundedness and compactness of these operators are given. Our results also generalize some known results in .

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence to the other. The notation $A\approx B$ means that there is a positive constant C such that $\frac{B}{C}\le A\le CB$.

## 2 Statement of the main results

In this paper, we shall prove the following results.

Theorem 2.1 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal, $p>0$, $q>-2$, and K is a nonnegative nondecreasing function on $\left[0,\mathrm{\infty }\right)$ such that

${\int }_{0}^{1}K\left(log\frac{1}{r}\right){\left(1-r\right)}^{min\left\{-1,q\right\}}{\left(log\frac{1}{1-r}\right)}^{{\chi }_{-1}\left(q\right)}r\phantom{\rule{0.2em}{0ex}}dr<\mathrm{\infty },$
(2.1)

where ${\chi }_{A}\left(x\right)$ denote the characteristic function of the set A. Then $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is bounded if and only if

$\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}<\mathrm{\infty },\phantom{\rule{2em}{0ex}}\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}<\mathrm{\infty }.$
(2.2)

Theorem 2.2 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal, $p>0$, $q>-2$, and K is a nonnegative nondecreasing function on $\left[0,\mathrm{\infty }\right)$ such that (2.1) hold. Then $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is compact if and only if $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is bounded, and (2.3)

Theorem 2.3 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal, $p>0$, $q>-2$, and K is a nonnegative nondecreasing function on $\left[0,\mathrm{\infty }\right)$ such that (2.1) hold. Then $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu ,0}$ is compact if and only if

$\underset{|z|\to 1}{lim}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}=0,\phantom{\rule{2em}{0ex}}\underset{|z|\to 1}{lim}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}=0.$
(2.4)

From the above three theorems, we get the following

Corollary 2.4 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Then the following statements hold.

1. (i)

$\varphi D{C}_{\phi }:B\to B$ is bounded if and only if

$\underset{z\in \mathrm{\Delta }}{sup}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-|\phi \left(z\right){|}^{2}\right)}^{2}}<\mathrm{\infty },\phantom{\rule{2em}{0ex}}\underset{z\in \mathrm{\Delta }}{sup}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right)\left({\phi }^{″}\left(z\right)\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{1-|\phi \left(z\right){|}^{2}}<\mathrm{\infty }.$
2. (ii)

$\varphi D{C}_{\phi }:B\to B$ is compact if and only if $\varphi D{C}_{\phi }:B\to B$ is bounded, and

$\begin{array}{c}\underset{|\phi \left(z\right)|\to 1}{lim}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-|\phi \left(z\right){|}^{2}\right)}^{2}}=0,\hfill \\ \underset{|\phi \left(z\right)|\to 1}{lim}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right)\left({\phi }^{″}\left(z\right)\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{1-|\phi \left(z\right){|}^{2}}=0.\hfill \end{array}$
3. (iii)

$\varphi D{C}_{\phi }:B\to {B}_{0}$ is compact if and only if

$\underset{|z|\to 1}{lim}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-|\phi \left(z\right){|}^{2}\right)}^{2}}=0,\phantom{\rule{2em}{0ex}}\underset{|z|\to 1}{lim}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right)\left({\phi }^{″}\left(z\right)\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{1-|\phi \left(z\right){|}^{2}}=0.$

Theorem 2.5 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Suppose that μ is normal, $p>0$, $q>-2$, and K is a nonnegative nondecreasing function on $\left[0,\mathrm{\infty }\right)$ such that (2.1) hold. Then the following statements hold.

1. (i)

$\varphi {C}_{\phi }D:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is bounded if and only if

$\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}<\mathrm{\infty },\phantom{\rule{2em}{0ex}}\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)\frac{|{\varphi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}<\mathrm{\infty }.$
2. (ii)

$\varphi {C}_{\phi }D:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is compact if and only if $\varphi {C}_{\phi }D:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is bounded, and

$\underset{|\phi \left(z\right)|\to 1}{lim}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}=0,\phantom{\rule{2em}{0ex}}\underset{|\phi \left(z\right)|\to 1}{lim}\mu \left(|z|\right)\frac{|{\varphi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}=0.$
3. (iii)

$\varphi {C}_{\phi }D:{Q}_{k}\left(p,q\right)\to {B}_{\mu ,0}$ is compact if and only if

$\underset{|z|\to 1}{lim}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}=0,\phantom{\rule{2em}{0ex}}\underset{|z|\to 1}{lim}\mu \left(|z|\right)\frac{|{\varphi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}=0.$

From Theorem 2.5, we get the following

Corollary 2.6 Let φ be an analytic self-map of Δ, and let ϕ be an analytic function in Δ. Then the following statements hold.

1. (i)

$\varphi {C}_{\phi }D:B\to B$ is bounded if and only if

$\underset{z\in \mathrm{\Delta }}{sup}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{2}}<\mathrm{\infty },\phantom{\rule{2em}{0ex}}\underset{z\in \mathrm{\Delta }}{sup}\left(1-|z{|}^{2}\right)\frac{|{\varphi }^{\prime }\left(z\right)|}{1-{|\phi \left(z\right)|}^{2}}<\mathrm{\infty }.$
2. (ii)

$\varphi {C}_{\phi }D:B\to B$ is compact if and only if $\varphi {C}_{\phi }D:B\to B$ is bounded, and

$\underset{|\phi \left(z\right)|\to 1}{lim}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{2}}=0,\phantom{\rule{2em}{0ex}}\underset{|\phi \left(z\right)|\to 1}{lim}\left(1-|z{|}^{2}\right)\frac{|{\varphi }^{\prime }\left(z\right)|}{1-{|\phi \left(z\right)|}^{2}}=0.$
3. (iii)

$\varphi {C}_{\phi }D:B\to {B}_{0}$ is compact if and only if

$\underset{|z|\to 1}{lim}\left(1-|z{|}^{2}\right)\frac{|\varphi \left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{2}}=0,\phantom{\rule{2em}{0ex}}\underset{|z|\to 1}{lim}\left(1-|z{|}^{2}\right)\frac{|{\varphi }^{\prime }\left(z\right)|}{1-{|\phi \left(z\right)|}^{2}}=0.$

## 3 Proofs of the main results

In this section, we will prove our main results. For this purpose, we need some auxiliary results.

Lemma 3.1 Let φ be an analytic self-map of Δ, ϕ be an analytic function in Δ. Suppose $p>0$, $q>-2$. Then is compact if and only if is bounded and for any bounded sequence ${\left\{{f}_{n}\right\}}_{n\in N}$ in ${Q}_{k}\left(p,q\right)$ which converges to zero uniformly on compact subsets of Δ as $n\to \mathrm{\infty }$, and ${\parallel \varphi D{C}_{\phi }{f}_{n}\parallel }_{{B}_{\mu }}\to 0$ (or ${\parallel \varphi {C}_{\phi }D{f}_{n}\parallel }_{{B}_{\mu }}\to 0$) as $n\to \mathrm{\infty }$.

Lemma 3.1 can be proved by standard way (see , Proposition 3.11]).

Lemma 3.2 A closed set $\mathbb{K}$ of ${B}_{\mu ,0}$ is compact if and only if it is bounded and satisfies

$\underset{|z|\to 1}{lim}\underset{f\in \mathbb{K}}{sup}\mu \left(|z|\right)|{f}^{\prime }\left(z\right)|=0.$
(3.1)

Proof First of all, we suppose that $\mathbb{K}$ is compact and let $\epsilon >0$. By the definition of ${B}_{\mu ,0}$, we can choose an $\frac{\epsilon }{2}$-net which center at ${f}_{1},{f}_{2},\dots ,{f}_{n}$ in $\mathbb{K}$ respectively, and a positive number r ($0) such that $\mu \left(|z|\right)|{f}_{i}^{\prime }\left(z\right)|<\frac{\epsilon }{2}$, for $1\le i\le n$ and $|z|>r$. If $f\in \mathbb{K}$, ${\parallel f-{f}_{i}\parallel }_{{B}_{\mu }}<\frac{\epsilon }{2}$ for some ${f}_{i}$, so we have

$\mu \left(|z|\right)|{f}^{\prime }\left(z\right)|\le {\parallel f-{f}_{i}\parallel }_{{B}_{\mu }}+\mu \left(|z|\right)|{f}_{i}^{\prime }\left(z\right)|<\epsilon ,$

for $|z|>r$. This establishes (3.1). □

On the other hand, if $\mathbb{K}$ is a closed bounded set which satisfies (3.1) and $\left\{{f}_{n}\right\}$ is a sequence in $\mathbb{K}$, then by the Montel’s theorem, there is a subsequence $\left\{{f}_{{n}_{k}}\right\}$ which converges uniformly on compact subsets of Δ to some analytic function f, and also $\left\{{f}_{{n}_{k}}^{\prime }\right\}$ converges uniformly to ${f}^{\prime }$ on compact subsets of Δ. According to (3.1), for every $\epsilon >0$, there is an r, $0, such that for all $g\in \mathbb{K}$, $\mu \left(|z|\right)|{g}^{\prime }\left(z\right)|<\frac{\epsilon }{2}$, if $|z|>r$. It follows that $\mu \left(|z|\right)|{f}^{\prime }\left(z\right)|<\frac{\epsilon }{2}$, if $|z|>r$. Since $\left\{{f}_{{n}_{k}}\right\}$ converges uniformly to f and $\left\{{f}_{{n}_{k}}^{\prime }\right\}$ converges uniformly to ${f}^{\prime }$ on $|z|\le r$, it follows that ${lim}_{k\to \mathrm{\infty }}sup{\parallel {f}_{{n}_{k}}-f\parallel }_{{B}_{\mu }}\le \epsilon$, i.e., ${lim}_{k\to \mathrm{\infty }}{\parallel {f}_{{n}_{k}}-f\parallel }_{{B}_{\mu }}=0$, so that $\mathbb{K}$ is compact.

Lemma 3.3 ()

Let $\alpha >0$ and $f\in H\left(\mathrm{\Delta }\right)$. Then we have

$\underset{z\in \mathrm{\Delta }}{sup}{\left(1-{|z|}^{2}\right)}^{\alpha }|{f}^{\prime }\left(z\right)|\approx |{f}^{\prime }\left(0\right)|+\underset{z\in \mathrm{\Delta }}{sup}{\left(1-{|z|}^{2}\right)}^{\alpha +1}|{f}^{″}\left(z\right)|.$

Proof of Theorem 2.1 First, suppose that the conditions in (2.2) hold. Then for any $z\in \mathrm{\Delta }$ and $f\in {Q}_{k}\left(p,q\right)$, by use of the fact ${\parallel f\parallel }_{{B}^{\frac{q+2}{p}}}\le C{\parallel f\parallel }_{{Q}_{k}\left(p,q\right)}$ and Lemma 3.3, we have (3.2)

Taking the supremum in (3.2) for $z\in \mathrm{\Delta }$, and employing (2.2), we deduce that

$\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$

is bounded.

Conversely, suppose that $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is bounded. Then there exists a constant C such that ${\parallel \varphi D{C}_{\phi }f\parallel }_{{B}_{\mu }}\le C{\parallel f\parallel }_{{Q}_{k}\left(p,q\right)}$ for all $f\in {Q}_{k}\left(p,q\right)$. Taking the functions $f\left(z\right)\equiv z$, and $f\left(z\right)\equiv \frac{{z}^{2}}{2}$, which belong to ${Q}_{k}\left(p,q\right)$, we get

$\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|<\mathrm{\infty }$
(3.3)

and

$\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}+\phi \left(z\right)\left[\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)\right]|<\mathrm{\infty }.$
(3.4)

From (3.3), (3.4), and the boundedness of the function $\phi \left(z\right)$, it follows that

$\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|<\mathrm{\infty }.$
(3.5)

For $w\in \mathrm{\Delta }$, let

${f}_{w}\left(z\right)=\frac{1-{|w|}^{2}}{{\left(1-\overline{w}z\right)}^{\frac{q+2}{p}}},$

by direct calculation, we get

${f}_{w}^{\prime }\left(w\right)=\frac{q+2}{p}\frac{\overline{w}}{{\left(1-{|w|}^{2}\right)}^{\frac{q+2}{p}}},\phantom{\rule{2em}{0ex}}{f}_{w}^{″}\left(w\right)=\frac{q+2}{p}\frac{p+q+2}{p}\frac{{\overline{w}}^{2}}{{\left(1-{|w|}^{2}\right)}^{\frac{p+q+2}{p}}}.$

From , we know that ${f}_{w}\in {Q}_{k}\left(p,q\right)$, for each $w\in \mathrm{\Delta }$. Moreover, there is a positive constant C such that ${sup}_{w\in \mathrm{\Delta }}{\parallel {f}_{w}\parallel }_{{Q}_{k}\left(p,q\right)}\le C$. Hence, we have

$\begin{array}{rcl}C\parallel \varphi D{C}_{\phi }\parallel & \ge & {\parallel \varphi D{C}_{\phi }{f}_{\phi \left(z\right)}\parallel }_{{B}_{\mu }}\\ \ge & -\frac{q+2}{p}\frac{p+q+2}{p}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}{\left(\phi \left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}\\ +\frac{q+2}{p}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)||\phi \left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}},\end{array}$
(3.6)

for $z\in \mathrm{\Delta }$. Therefore, we obtain (3.7)

Next, for $w\in \mathrm{\Delta }$, let

${g}_{w}\left(z\right)=\frac{{\left(1-{|w|}^{2}\right)}^{2}}{{\left(1-\overline{w}z\right)}^{\frac{p+q+2}{p}}}-\frac{p+q+2}{q+2}\frac{1-{|w|}^{2}}{{\left(1-\overline{w}z\right)}^{\frac{q+2}{p}}}.$

Then from , we see that ${g}_{w}\left(z\right)\in {Q}_{k}\left(p,q\right)$ and ${sup}_{w\in \mathrm{\Delta }}{\parallel {g}_{w}\parallel }_{{Q}_{k}\left(p,q\right)}<\mathrm{\infty }$. Since

${g}_{\phi \left(z\right)}^{\prime }\left(\phi \left(z\right)\right)=0,\phantom{\rule{2em}{0ex}}|{g}_{\phi \left(z\right)}^{″}\left(\phi \left(z\right)\right)|=\frac{p+q+2}{p}\frac{{|\phi \left(z\right)|}^{2}}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}},$

we have

$\begin{array}{rcl}\mathrm{\infty }& >& C\parallel \varphi D{C}_{\phi }\parallel \ge {\parallel \varphi D{C}_{\phi }{g}_{\phi \left(z\right)}\parallel }_{{B}_{\mu }}\\ \ge & \frac{p+q+2}{p}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}{\left(\phi \left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}.\end{array}$
(3.8)

Thus (3.9)

Inequality (3.5) gives

$\underset{|\phi \left(z\right)|\le \frac{1}{2}}{sup}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}\le {\left(\frac{4}{3}\right)}^{\frac{p+q+2}{p}}\underset{|\phi \left(z\right)|\le \frac{1}{2}}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|<\mathrm{\infty }.$
(3.10)

Therefore, the first inequality in (2.2) follows from (3.9) and (3.10). From (3.7) and (3.8), we obtain

$\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)||\phi \left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}<\mathrm{\infty }.$
(3.11)

Inequalities (3.3) and (3.11) imply (3.12)

and (3.13)

Inequality (3.12) together with (3.13) implies the second inequality of (2.2). The proof of Theorem 2.1 is completed. □

Proof of Theorem 2.2 First, suppose that $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is bounded and (2.3) hold. Let ${\left\{{f}_{n}\right\}}_{n\in N}$ be a sequence in ${Q}_{k}\left(p,q\right)$ such that ${sup}_{n\in N}{\parallel {f}_{n}\parallel }_{{Q}_{k}\left(p,q\right)}<\mathrm{\infty }$, and ${f}_{n}$ converges to 0 uniformly on compact subsets of Δ as $n\to \mathrm{\infty }$. By the assumption, for any $\epsilon >0$, there exists a $\delta \in \left(0,1\right)$ such that

$\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}<\epsilon$

and

$\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}<\epsilon$

hold for $\delta <|\phi \left(z\right)|<1$. Since $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is bounded, it follows from the proof of Theorem 2.1 that

$\begin{array}{c}{M}_{1}:=\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|<\mathrm{\infty },\hfill \\ {M}_{2}:=\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|<\mathrm{\infty }.\hfill \end{array}$

Let $\mathbb{K}=\left\{z\in \mathrm{\Delta }:|\phi \left(z\right)|\le \delta \right\}$. Then we have

$\begin{array}{rcl}{\parallel \varphi D{C}_{\phi }{f}_{n}\parallel }_{{B}_{\mu }}& =& \underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|{\left(\varphi D{C}_{\phi }{f}_{n}\right)}^{\prime }\left(z\right)|+|\varphi \left(0\right){f}_{n}^{\prime }\left(\phi \left(0\right)\right){\phi }^{\prime }\left(0\right)|\\ \le & \underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|\varphi \left(z\right){f}_{n}^{″}\left(\phi \left(z\right)\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|\\ +\underset{z\in \mathrm{\Delta }}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)||{f}_{n}^{\prime }\left(\phi \left(z\right)\right)|+|\varphi \left(0\right){f}_{n}^{\prime }\left(\phi \left(0\right)\right){\phi }^{\prime }\left(0\right)|\\ \le & \underset{z\in \mathbb{K}}{sup}\mu \left(|z|\right)|\varphi \left(z\right){f}_{n}^{″}\left(\phi \left(z\right)\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|\\ +\underset{z\in \mathbb{K}}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)||{f}_{n}^{\prime }\left(\phi \left(z\right)\right)|\\ +\underset{z\in \left(\mathrm{\Delta }-\mathbb{K}\right)}{sup}\mu \left(|z|\right)|\varphi \left(z\right){f}_{n}^{″}\left(\phi \left(z\right)\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|\\ +\underset{z\in \left(\mathrm{\Delta }-\mathbb{K}\right)}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)||{f}_{n}^{\prime }\left(\phi \left(z\right)\right)|+|\varphi \left(0\right){f}_{n}^{\prime }\left(\phi \left(0\right)\right){\phi }^{\prime }\left(0\right)|\\ \le & \underset{z\in \mathbb{K}}{sup}\mu \left(|z|\right)|\varphi \left(z\right){f}_{n}^{″}\left(\phi \left(z\right)\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|\\ +\underset{z\in \mathbb{K}}{sup}\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)||{f}_{n}^{\prime }\left(\phi \left(z\right)\right)|+|\varphi \left(0\right){f}_{n}^{\prime }\left(\phi \left(0\right)\right){\phi }^{\prime }\left(0\right)|\\ +C\underset{z\in \left(\mathrm{\Delta }-\mathbb{K}\right)}{sup}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}{\parallel {f}_{n}\parallel }_{{Q}_{k}\left(p,q\right)}\\ +\underset{z\in \left(\mathrm{\Delta }-\mathbb{K}\right)}{sup}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}{\parallel {f}_{n}\parallel }_{{Q}_{k}\left(p,q\right)}\\ \le & {M}_{2}\underset{z\in \mathbb{K}}{sup}|{f}_{n}^{″}\left(\phi \left(z\right)\right)|+{M}_{1}\underset{z\in \mathbb{K}}{sup}|{f}_{n}^{\prime }\left(\phi \left(z\right)\right)|\\ +2C\epsilon {\parallel {f}_{n}\parallel }_{{Q}_{k}\left(p,q\right)}+|\varphi \left(0\right){f}_{n}^{\prime }\left(\phi \left(0\right)\right){\phi }^{\prime }\left(0\right)|.\end{array}$
(3.14)

From the fact that ${f}_{n}\to 0$ as $n\to \mathrm{\infty }$ on compact subsets of Δ, and Cauchy’s estimate, we conclude that ${f}_{n}^{\prime }\to 0$ and ${f}_{n}^{″}\to 0$ as $n\to \mathrm{\infty }$ on compact subsets of Δ. Letting $n\to \mathrm{\infty }$ in (3.14) and using the fact that ε is an arbitrary positive number, we obtain ${lim}_{n\to \mathrm{\infty }}{\parallel \varphi D{C}_{\phi }{f}_{n}\parallel }_{{B}_{\mu }}=0$. Applying Lemma 3.1, the result follows.

Conversely, suppose that $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is compact. Then it is clear that $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is bounded. Let $\left\{{z}_{n}\right\}$ be a sequence in Δ such that $|\phi \left({z}_{n}\right)|\to 1$ as $n\to \mathrm{\infty }$. For $n\in N$, let

${f}_{n}\left(z\right)=\frac{1-{|\phi \left({z}_{n}\right)|}^{2}}{{\left(1-\overline{\phi \left({z}_{n}\right)}z\right)}^{\frac{q+2}{p}}}.$

Then ${sup}_{n\in N}{\parallel {f}_{n}\parallel }_{{Q}_{k}\left(p,q\right)}<\mathrm{\infty }$ and ${f}_{n}$ converges to 0 uniformly on compact subsets of Δ as $n\to \mathrm{\infty }$. Since $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is compact, by Lemma 3.1, we have ${lim}_{n\to \mathrm{\infty }}{\parallel \varphi D{C}_{\phi }{f}_{n}\parallel }_{{B}_{\mu }}=0$. On the other hand, from (3.6) we have

$\begin{array}{rcl}C{\parallel \varphi D{C}_{\phi }{f}_{n}\parallel }_{{B}_{\mu }}& \ge & -\frac{q+2}{p}\frac{p+q+2}{p}\mu \left(|{z}_{n}|\right)\frac{|\varphi \left({z}_{n}\right){\left({\phi }^{\prime }\left({z}_{n}\right)\right)}^{2}{\left(\phi \left({z}_{n}\right)\right)}^{2}|}{{\left(1-{|\phi \left({z}_{n}\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}\\ +\frac{q+2}{p}\mu \left(|{z}_{n}|\right)\frac{|\varphi \left({z}_{n}\right){\phi }^{″}\left({z}_{n}\right)+{\varphi }^{\prime }\left({z}_{n}\right){\phi }^{\prime }\left({z}_{n}\right)||\phi \left({z}_{n}\right)|}{{\left(1-{|\phi \left({z}_{n}\right)|}^{2}\right)}^{\frac{q+2}{p}}},\end{array}$

which implies that (3.15)

if one of these two limits exists.

Next, for $n\in N$, set

${g}_{n}\left(z\right)=\frac{{\left(1-{|\phi \left({z}_{n}\right)|}^{2}\right)}^{2}}{{\left(1-\overline{\phi \left({z}_{n}\right)}z\right)}^{\frac{p+q+2}{p}}}-\frac{p+q+2}{q+2}\frac{1-{|\phi \left({z}_{n}\right)|}^{2}}{{\left(1-\overline{\phi \left({z}_{n}\right)}z\right)}^{\frac{q+2}{p}}}.$

Then ${\left\{{g}_{n}\right\}}_{n\in N}$ is a sequence in ${Q}_{k}\left(p,q\right)$. Notice that ${g}_{n}^{\prime }\left(\phi \left({z}_{n}\right)\right)=0$,

$|{g}_{n}^{″}\left(\phi \left({z}_{n}\right)\right)|=\frac{p+q+2}{p}\frac{|\phi \left({z}_{n}\right){|}^{2}}{{\left(1-{|\phi \left({z}_{n}\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}.$

And ${g}_{n}$ converges to 0 uniformly on compact subsets of Δ as $n\to \mathrm{\infty }$. Since $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is compact, we have ${lim}_{n\to \mathrm{\infty }}{\parallel \varphi D{C}_{\phi }{g}_{n}\parallel }_{{B}_{\mu }}=0$. On the other hand, since

${\parallel \varphi D{C}_{\phi }{f}_{n}\parallel }_{{B}_{\mu }}\ge \frac{p+q+2}{p}\mu \left(|{z}_{n}|\right)\frac{|\varphi \left({z}_{n}\right){\left({\phi }^{\prime }\left({z}_{n}\right)\right)}^{2}{\left(\phi \left({z}_{n}\right)\right)}^{2}|}{{\left(1-{|\phi \left({z}_{n}\right)|}^{2}\right)}^{\frac{p+q+2}{p}}},$

we have (3.16)

From (3.15) and (3.16), we get

$\underset{|\phi \left({z}_{n}\right)|\to 1}{lim}\mu \left(|{z}_{n}|\right)\frac{|\varphi \left({z}_{n}\right){\phi }^{″}\left({z}_{n}\right)+{\varphi }^{\prime }\left({z}_{n}\right){\phi }^{\prime }\left({z}_{n}\right)|}{{\left(1-{|\phi \left({z}_{n}\right)|}^{2}\right)}^{\frac{q+2}{p}}}=0.$
(3.17)

The proof of Theorem 2.2 is completed. □

Proof of Theorem 2.3 First, let $f\in {Q}_{k}\left(p,q\right)$. By the proof of Theorem 2.1, we have

$\begin{array}{rcl}\mu \left(|z|\right)|{\left(\varphi D{C}_{\phi }f\right)}^{\prime }\left(z\right)|& \le & C\left\{\mu \left(|z|\right)|\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}\\ +\mu \left(|z|\right)|\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}\right\}{\parallel f\parallel }_{{Q}_{k}\left(p,q\right)}.\end{array}$
(3.18)

Taking the supremum in (3.18) over all $f\in {Q}_{k}\left(p,q\right)$ such that ${\parallel f\parallel }_{{Q}_{k}\left(p,q\right)}\le 1$, we can get

$\underset{|z|\to 1}{lim}\underset{{\parallel f\parallel }_{{Q}_{k}\left(p,q\right)}\le 1}{sup}\mu \left(|z|\right)|{\left(\varphi D{C}_{\phi }f\right)}^{\prime }\left(z\right)|=0.$

By Lemma 3.2, we see that the operator $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu ,0}$ is compact.

Conversely, suppose that $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu ,0}$ is compact. By taking $f\left(z\right)\equiv z$ and using the boundedness of $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu ,0}$, we get

$\underset{|z|\to 1}{lim}\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|=0.$
(3.19)

From this, by taking the test function $f\left(z\right)\equiv \frac{{z}^{2}}{2}$ and using the boundedness of $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu ,0}$, it follows that

$\underset{|z|\to 1}{lim}\mu \left(|z|\right)|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|=0.$
(3.20)

In the following, we distinguish two cases:

First, we assume that ${\parallel \phi \parallel }_{\mathrm{\infty }}<1$. From (3.19) and (3.20), we obtain

$\begin{array}{c}\underset{|z|\to 1}{lim}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{1}{{\left(1-{\parallel \phi \parallel }_{\mathrm{\infty }}\right)}^{\frac{p+q+2}{p}}}\underset{|z|\to 1}{lim}\mu \left(|z|\right)|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|=0\hfill \end{array}$

and

$\begin{array}{c}\underset{|z|\to 1}{lim}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}\hfill \\ \phantom{\rule{1em}{0ex}}\le \frac{1}{{\left(1-{\parallel \phi \parallel }_{\mathrm{\infty }}\right)}^{\frac{q+2}{p}}}\underset{|z|\to 1}{lim}\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|=0.\hfill \end{array}$

So the result follows in this case.

Secondly, we assume that ${\parallel \phi \parallel }_{\mathrm{\infty }}=1$. Let ${\left\{\phi \left({z}_{n}\right)\right\}}_{n\in N}$ be a sequence such that ${lim}_{n\to \mathrm{\infty }}|\phi \left({z}_{n}\right)|=1$. From the compactness of $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu ,0}$, we see that $\varphi D{C}_{\phi }:{Q}_{k}\left(p,q\right)\to {B}_{\mu }$ is compact. According to Theorem 2.2, we get

$\underset{|\phi \left(z\right)|\to 1}{lim}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\left({\phi }^{\prime }\left(z\right)\right)}^{2}|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{p+q+2}{p}}}=0$
(3.21)

and

$\underset{|\phi \left(z\right)|\to 1}{lim}\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}=0.$
(3.22)

For any $\epsilon >0$, from (3.19) and (3.22), there exists $r\in \left(0,1\right)$ such that

$\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}<\epsilon ,$

for $r<|\phi \left(z\right)|<1$, and there exists $\sigma \in \left(0,1\right)$ such that

$\mu \left(|z|\right)|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|\le \epsilon {\left(1-{r}^{2}\right)}^{\frac{q+2}{p}},$

for $\sigma <|z|<1$. Therefore, when $\sigma <|z|<1$, and $r<|\phi \left(z\right)|<1$, we obtain

$\mu \left(|z|\right)\frac{|\varphi \left(z\right){\phi }^{″}\left(z\right)+{\varphi }^{\prime }\left(z\right){\phi }^{\prime }\left(z\right)|}{{\left(1-{|\phi \left(z\right)|}^{2}\right)}^{\frac{q+2}{p}}}<\epsilon .$
(3.23)

On the other hand, if $\sigma <|z|<1$, and $|\phi \left(z\right)|\le r$, we have (3.24)

From (3.23) and (3.24), we get the second equality of (2.4). Similarly to the above arguments, by (3.20) and (3.21), we can get the first equality of (2.4). The proof of Theorem 2.3 is completed. □

Similarly to the proofs of Theorems 2.1-2.3, we can get the proofs of Corollary 2.4, Theorem 2.5 and Corollary 2.6. We omit the proofs.

## References

1. Cowen CC, Maccluer BD Studies in Advanced Mathematics. In Composition Operators on Spaces of Analytic Functions. CRC Press, Boca Raton; 1995.

2. Fu X, Zhu X: Weighted composition operators on some weighted spaces in the unit ball. Abstr. Appl. Anal. 2008., 2008: Article ID 605807

3. Hibschweiler RA, Portnoy N: Composition followed by differentiation between Bergman and Hardy spaces. Rocky Mt. J. Math. 2005, 35(3):843–855. 10.1216/rmjm/1181069709

4. Hu ZJ, Wang SS: Composition operators on Bloch-type spaces. Proc. R. Soc. Edinb. A 2005, 135(6):1229–1239. 10.1017/S0308210500004340

5. Kotilainen M:On composition operators in ${Q}_{k}$ type spaces. J. Funct. Spaces Appl. 2007, 5(2):103–122. 10.1155/2007/956392

6. Li SX, Stevič S: Composition followed by differentiation between Bloch type spaces. J. Comput. Anal. Appl. 2007, 9(2):195–205.

7. Li SX, Stevič S: Composition followed by differentiation between${H}^{\mathrm{\infty }}$and α -Bloch spaces. Houst. J. Math. 2009, 35(1):327–340.

8. Ohno S: Products of composition and differentiation between Hardy spaces. Bull. Aust. Math. Soc. 2006, 73(2):235–243. 10.1017/S0004972700038818

9. Shields AL, Williams DL: Bonded projections, duality, and multipliers in spaces of analytic functions. Trans. Am. Math. Soc. 1971, 162: 287–302.

10. Stevič S:Norm of weighted composition operators from Bloch space to ${H}_{\mu }^{\mathrm{\infty }}$ on the unit ball. Ars Comb. 2008, 88: 125–127.

11. Wulan HS, Zhou JZ:${Q}_{k}$ type spaces of analytic functions. J. Funct. Spaces Appl. 2006, 4(1):73–84. 10.1155/2006/910813

12. Yang WF:Products of composition and differentiation operators from ${Q}_{k}\left(p,q\right)$ to Bloch-type spaces. Abstr. Appl. Anal. 2009., 2009: Article ID 741920

13. Zhao RH: On a general family of function spaces. Ann. Acad. Sci. Fenn., Ser. A 1 Math. 1996, 105: 1–56.

14. Zhu KH: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 1993, 23(3):1143–1177. 10.1216/rmjm/1181072549

## Acknowledgements

The work is supported by the National Natural Science Foundation of China (Grant No. 11171080), and Foundation of Science and Technology Department of Guizhou Province (Grant No.  07).

## Author information

Authors

### Corresponding author

Correspondence to Jianren Long.

### Competing interests

The authors declare that they have no competing interests.

### Authors’ contributions

All authors drafted the manuscript, read and approved the final manuscript.

## Rights and permissions

Reprints and Permissions

Long, J., Wu, P. Weighted composition followed and proceeded by differentiation operators from ${Q}_{k}\left(p,q\right)$ spaces to Bloch-type spaces. J Inequal Appl 2012, 160 (2012). https://doi.org/10.1186/1029-242X-2012-160

• Accepted:

• Published:

• DOI: https://doi.org/10.1186/1029-242X-2012-160

### Keywords

• ${Q}_{k}\left(p,q\right)$ spaces
• Bloch-type spaces
• weighted composition followed and proceeded by differentiation operators
• boundedness
• compactness 