Skip to main content

On spectral properties of the modified convolution operator

Abstract

We investigated the s-number of the modified convolution operator and obtained the following results

c 1 sup Q ? G 1 | Q | 1 p ' + 1 q | ? Q f(x)dx|= ? f ? M p q = c 3 sup Q ? F 1 | Q | 1 p ' + 1 q | ? Q f(s)ds|,

where 1<p<2<q<8, p ' = p p - 1 , G is a set of all segments Q from [0,1], F is a set of all compacts from [0,1], |Q| is the measure of a set Q.

MSC:42A45, 44A35.

1 Introduction

Let 1=p<8, 0<q=8. We denote by S p , q the space of all compact operators A, acting in the space L 2 [0,1] of all 1-periodic functions square integrable on [0,1] for s-numbers such that the following quasinorm is finite

? A ? S p , q = ( ? m = 1 8 s m q ( A ) m q / p - 1 ) 1 / q ,

if q<8, and

? A ? S p , 8 = sup m m 1 p s m if q = 8 .

Recall that the sequence s m (A) (s-numbers of operator A) are numerated eigenvalues of the operator A * A .

We consider the convolution operator

(Af)(y)= ? 0 1 K(x-y)f(x)dx

acting in L 2 [0,1]. Given a function f? L 1 [0,1], we consider also the modified convolution operator

( A f f)(y)= ? 0 1 (Kf)(x-y)f(x)dx.

We say that f belongs to the space M p 0 , q 0 p 1 , q 1 , if for A? S p 0 , q 0 , A f ? S p 1 , q 1 and

? A f ? S p 1 , q 1 =c ? A ? S p 0 , q 0 ,

where c>0 depends only on p 0 , q 0 , p 1 , q 1 .

This means that the linear operator R f defined by the equality R f (A)= A f is bounded from S p 0 , q 0 to S p 1 , q 1 . Let

? f ? M p 0 , q 0 p 1 , q 1 = ? R f ? S p 0 , q 0 ? S p 1 , q 1 .

Given that the eigenvalues of the operator K*f coincide with the Fourier coefficients of the kernel K with respect to the trigonometric system, in the case p 0 = p 1 = q 0 = q 1 =p this problem reduces to the well-known problem of Fourier series multipliers. Let K? L 1 ([0,1]) and { a m ( K ) } m ? Z be the sequence of its Fourier coefficients with respect to the trigonometric system { e 2 p i k x } k ? Z . It is assumed that K is such that { a m ( K ) } m ? Z ? l p , 1=p=8. Let T f = { a m ( K f ) } m ? Z ? l p . The problem is to determine conditions on the function f ensuring the boundedness of the operator T f : l p ? l p .

This problem was considered in the works of Stechkin [1], Hirschman [2], Edelstein [3], Birman and Solomyak [4], Karadzhov [5], and others.

We obtain sufficient conditions on a multiplier f ensuring that it belongs to the space M p 0 , q 0 p 1 , q 1 . These conditions are expressed in terms of Lorentz and Besov spaces. We also construct examples showing the sharpness of the obtained constants for corresponding embedding theorems.

2 Main results

Let f be a µ measurable function which takes finite values almost everywhere and let

m(s,f)=µ ( { x : x ? [ 0 , 1 ] , | f | > s } )

be its distribution function. The function

f * (t)=inf { s : m ( s , f ) = t }

is a nonincreasing rearrangement of f.

We say that a function f belongs to the Lorentz space L p , q if f is measurable and

? f ? L p , q = ( ? 0 8 ( t 1 p f * ( t ) ) q d t t ) 1 q <8,

for 1=q<8 and

? f ? L p , 8 = sup t > 0 t 1 p f * (t)<8,

for q=8.

Theorem 1 Let1< p 0 <2= p 1 , 1= q 1 = q 0 =8, 1 r = 1 p 0 - 1 p 1 , 1 s = 1 q 1 - 1 q 0 andf? L r , s [0,1]. IfA? S p 0 , q 0 , then A f ? S p 1 , q 1 and

? A f ? S p 1 , q 1 =c ? f ? L r , s ? A ? S p 0 , q 0 ,

i.e. L r , s [0,1]? M p 0 , q 0 p 1 , q 1 .

In the following theorem the cases p= p o = q 0 , q= p 1 = q 1 are considered. The upper and the lower estimates of the norm ? f ? M p q ( M p q := M p , p q , q ) are obtained.

Theorem 2 Let1<p<2<q<8, p ' = p p - 1 . Let G be a set of all segments Q from[0,1], F be a set of all compacts from[0,1], then

c 1 sup Q ? G 1 | Q | 1 p ' + 1 q | ? Q f(x)dx|= ? f ? M p q = c 3 sup Q ? F 1 | Q | 1 p ' + 1 q | ? Q f(s)ds|,

where|Q|is the measure of a set Q.

We shall define the class of generalized monotone functions for which the upper and the lower estimates coincide.

We say that function f is a generalized monotone function, if there exists a constant c>0 such that for every x?(0,1] the inequality

|f(x)|= c x | ? 0 x f(y)dy|

holds. The class of such functions is denoted by N.

Corollary 1 Let1<p<2<q<8. Iff?N, thenf? M p q if and only if

sup t > 0 t 1 p - 1 q f * (t)<8.

Moreover, ? f ? M p q ~ sup t > 0 t 1 p - 1 q f * (t).

In case parameters p 0 , p 1 are both either less or greater than 2, we use the space of smooth functions.

Let 1=p<8, a>0. We denote by B p , q a [0,1] the space of all measurable functions f on [0,1] such that

? f ? B p , q a = ( ? k = 0 8 ( 2 a k ? ? k f ? p ) q ) 1 q <8

for 1=q<8, and

? f ? B p , 8 a = sup k 2 a k ? ? k f ? p <8

for q=8. Here { a m ( f ) } m ? N are the Fourier coefficients of the function f by trigonometric system { e 2 p i k x } k ? Z , ? k f= ? k f(x)= ? [ 2 k - 1 ] = | m | < 2 k a m (f) e 2 p i m x , and [ 2 k - 1 ] is the integer part of 2 k - 1 .

This class is called the Nikol’skii-Besov space.

Theorem 3 Let1< p 0 = p 1 <8, 2?[ p 0 , p 1 ], 1< q 0 = q 1 =8,

a= min x ? [ 1 p 1 , 1 p 0 ] | 1 2 -x|, 1 r = max x ? [ 1 p 1 , 1 p 0 ] | 1 2 -x|,1- 1 s = 1 q 0 - 1 q 1

andf? B r , s a [0,1].

IfA? S p 0 , q 0 , then A f ? S p 1 , q 1 and

? A f ? S p 1 , q 1 =c ? f ? B r , s a ? A ? S p 0 , q 0 ,

i.e., B r , s a ? M p 0 , q 0 p 1 , q 1 .

In the case p 0 = p 1 = q 0 = q 1 , Karadzhov’s result (see [5]) follows from Theorem 3:

B r , 1 1 r ? M p = M p , p p , p , 1 r =| 1 p - 1 2 |.

Now consider the case 1= q 1 < q 0 =8.

Theorem 4 Let1< p 0 < p 1 <8, 1= q 1 < q 0 =8, 2?( p 0 , p 1 ), 1 r -a= 1 p 0 - 1 p 1 , 1 s = 1 q 1 - 1 q 0 , a> min x ? [ 1 p 1 , 1 p 0 ] | 1 2 -x|.

Then B r , s a [0,1]? M p 0 , q 0 p 1 , q 1 .

3 Properties of M p 0 , q 0 p 1 , q 1 class

To prove the properties of M p 0 , q 0 p 1 , q 1 class we need the following lemma. We first define a discrete Lorentz space. l p q is called a discrete Lorentz space whose elements are sequences of numbers ?= { ? k } k = 8 8 with the only limit point 0 such that

? ? ? l p q = ( ? m = 1 8 | ? m * | q m q p - 1 ) 1 q ,1=q<8

where { ? m * } m = 1 8 nonincreasing rearrangement of the sequence { | ? k | } k = 8 8 .

For q=8,

? ? ? l p 8 = sup m m 1 p ? m * .

Lemma 1 (See [6])

Let1<r, p 0 , p 1 <8, 1= q 0 , q 1 ,s=8. Then

? a * b ? l p 1 , q 1 =c ? b ? l r , s ? a ? l p 0 , q 0 ,

where 1 p 1 +1= 1 r + 1 p 0 , 1 q 1 = 1 s + 1 q 0 .

Let X ¯ =( X 0 , X 1 ), where X 0 , X 1 are Banach spaces, be a compatible pair. We define the functional K(t,a) for t>0 and a? X 0 + X 1 by the following formula:

K(t,a)= inf a = a 0 + a 1 ( ? a 0 ? X 0 + t ? a 1 ? X 1 ) .

We denote by X ¯ ? , q , k the space {a? X 0 + X 1 : ? a ? ? , q , k = F ? , q (K(t,a))}, where F ? , q is a functional defined on nonnegative functions f by formula

F ? , q ( f ( t ) ) = ( ? 0 8 ( t - ? f ( t ) ) q d t t ) 1 q ,1=q<8

and

F ? , 8 ( f ( t ) ) = sup t > 0 t - ? f(t),q=8.

Let X a 1 0 , p 1 0 and X a 2 1 , p 2 1 be the spaces obtained by the method of real interpolation of Banach pairs of spaces ( X 0 1 , X 1 1 ), ( X 0 2 , X 1 2 ) respectively.

Lemma 2 (See [7])

Let0< a i , ß i <1, 1= p i , q i =8, i=0,1, a 0 ? a 1 , ß 0 ? ß 1 . If T is a bilinear operator:

T: X a 0 , p 0 × Y 0 ? Z ß 0 , q 0

and

T: X a 1 , p 1 × Y 1 ? Z ß 1 , q 1

then

T: X a , p × Y ? , r ? Z ß , q .

Herea=(1-?) a 0 +? a 1 , ß=(1-?) ß 0 +? ß 1 , 1 p + 1 r >1, 1+ 1 q = 1 p + 1 r +(1-?)( 1 q 0 - 1 p 0 )+? ( 1 q 1 - 1 p 1 ) + , x + =max(x,0).

Remark Since the s-numbers of convolution operator A coincide with the modules of the Fourier coefficients of the kernel K, the problem of estimating the s-numbers of “transformed” operator A f can be reduced to the study of the following inequality

? a * b ? l p 1 , q 1 =c ? a ? l p 0 , q 0 ,
(1)

and we have to describe the class of those functions f with Fourier coefficients b= { b m } m ? Z , for which Inequality (1) holds.

Theorem 5

  1. (1)

    Let1= p 0 , p 1 <8, 1= q 0 , q 1 =8, 1 p i + 1 p i ' = 1 q i + 1 q i ' =1, i=0,1. Then

    M p 0 , q 0 p 1 , q 1 = M p 1 ' , q 1 ' p 0 ' , q 0 ' .
  2. (2)

    Let1< p 0 < r 0 < p 1 ' <8, 1 p 1 + 1 p 1 ' =1, 1 p 1 - 1 p 0 = 1 r 1 - 1 r 0 , then

    M p 0 , q 0 p 1 , q 1 ? M r 0 , s r 1 , t ,

where 1 t - 1 s = ( 1 q 1 - 1 q 0 ) + .

Proof The proof of the first statement follows from Remark and from the fact that ? ( T f ) * ?=? T f ¯ ?, where f ¯ is a complex conjugate of the function f. Now we prove (2).

Let f? M p 0 , q 0 p 1 , q 1 , then by (1) it follows that f? M p 1 ' , q 1 ' p 0 ' , q 0 ' , and

where 1 p i + 1 p i ' = 1 q i + 1 q i ' =1. According to Lemma 1, the operator T(a,f)=a*b

T: l p 0 , q 0 × M p 0 , q 0 p 1 , q 1 ? l p 1 , q 1

is bounded. Using (1) we have

T: l p 1 ' , q 1 ' × M p 0 , q 0 p 1 , q 1 ? l p 0 ' , q 0 ' .

Further, applying the theorem on bilinear interpolation (Lemma 2) we find that the operator

T: l r 0 , s × M p 0 , q 0 p 1 , q 1 ? l r 1 , t

is also bounded, i.e., M p 0 , q 0 p 1 , q 1 ? M r 0 , s r 1 , t , where

1 r 1 = 1 - ? p 1 + ? p 0 ' , 1 r 0 = 1 - ? p 0 + ? p 1 ' , 1 t - 1 s = ( 1 q 1 - 1 q 0 ) +

for every 0<?<1. Eliminating ? from this equation, we obtain that

1 p 1 - 1 p 0 = 1 r 1 - 1 r 0 ,

and the condition 0<?<1 implies the condition 1< p 0 < r 0 < p 1 ' <8, where 1 p 1 + 1 p 1 ' =1.

The proof is complete. ?

By (2), in particular, the following proposition follows.

Let 1<p<r< p ' <8, 1 p + 1 p ' =1, then

M p , q ? M r , t ,

where M p , q = M p , q p , q and q,t?[1,8[ are any.

4 Proof of main results

For a given pair X ¯ =( X 0 , X 1 ) we consider the space G( X ¯ ) consisting of all functions f bounded and continuous in the strip

S={z:0=Rez=1}

with values in X 0 + X 1 . Moreover, f are analytic in the open strip

S 0 ={z:0<Rez<1}

and such that the mapping t?f(j+it) (j=0,1) is a continuous function on the real axis with values in X j (j=0,1) which tends to 0 for |t|?8. It is clear that G( X ¯ ) is a vector space. We endow G with the norm

? f ? G =max ( sup t ? f ( i t ) ? X 0 , sup t ? f ( 1 + i t ) ? X 1 ) .

The space X ¯ [ ? ] 0=?=1 consists of all elements a? X 0 + X 1 such that a=f(?) for some function f?G( X ¯ ). The norm on X ¯ [ ? ] is equal to

? a ? [ ? ] =inf { ? f ? G : f ( ? ) = a , f ? G } .

In order to prove our main result, we need two lemmas in [8].

Lemma 3 (Bilinear interpolation, the complex method, see [8])

Let T be a bilinear operator such that

T: X 0 × Y 0 ? Z 0

and

T: X 1 × Y 1 ? Z 1 .

Then

T: X [ ? ] × Y [ ? ] ? Z [ ? ] ,

where X [ ? ] , Y [ ? ] , Z [ ? ] are the spaces obtained by the method of complex interpolation of Banach pairs of spaces( X 0 , X 1 ), ( Y 0 , Y 1 ), ( Z 0 , Z 1 )respectively.

Lemma 4 (Bilinear interpolation, the real method, see [8])

Let T be a bilinear operator such that

T: X 0 × Y 0 ? Z 0

and

T: X 1 × Y 1 ? Z 1

with the norms B 0 , B 1 respectively. Then

T: X ? , t 1 × Y ? , t 2 ? Z ? , s ,

where 1 s +1= 1 t 1 + 1 t 2 . Moreover,

?T?=c B 0 1 - ? B 1 ? .

Proof of Theorem 1 First we prove the inequality:

? a * b ? l p 1 , q 1 =c ? f ? L r ? a ? l p 0 , q 0 ,
(2)

where b= { b k } k ? Z are Fourier coefficients of the function f.

If r=2, Inequality (2) follows by Lemma 1 and Hardy-Littlewood-Paley inequality [9]. Indeed, since f? L r s , by the Hardy-Littlewood-Paley theorem, we have b? l r ' s and the following inequality holds

? b ? l r ' s =c ? f ? L r s .

Taking s=r, we get

? b ? l r ' , r =c ? f ? L r .

Now let 2<r<8. Let a? l 2 f~ ? k ? Z a k e 2 p i k x , then by Parseval’s equality we get

? a * b ? l 2 = ? f f ? L 2 = ? f ? L 2 ? f ? L 8 = ? f ? L 8 ? a ? l 2 ,

i.e., M 2 = L 8 . From Lemma 1, using Parseval’s equality we have

? a * b ? l p 1 , q 1 =c ? f ? L 2 ? a ? l p 0 , q 0 ,

where 1 p 1 +1= 1 2 + 1 p 0 1 p 1 + 1 2 = 1 p 0 1 q 1 = 1 q 0 + 1 2 .

Thus, for the bilinear operator T(a,f)=a*b we obtain

Applying the method of complex interpolation (Lemma 3), we obtain Inequality (2). Now we shall prove the inequality

? a * b ? l p 1 , q 1 =c ? f ? L r , s ? a ? l p 0 , q 0 ,
(3)

where 1 s = 1 q 1 - 1 q 0 .

Let q 0 =8 and p 0 be fixed in Inequality (2). Taking 1 q 1 i = 1 r i i=0,1, choose parameters r 0 r 1 p 1 0 p 1 1 such that

1 p 0 = 1 p 1 i + 1 r i ,i=0,1.
(4)

Then from Inequality (2) we have

Using Marcinkiewicz-Calderón interpolation theorem (see [8]), we get

? a * b ? l p 1 , s = ( c 1 ? a ? l p 0 , 8 ) ? ( c 2 ? a ? l p 0 , 8 ) 1 - ? ? f ? L r , s =c ? a ? l p 0 , 8 ? f ? L r , s ,
(5)

where 1 p 1 = 1 - ? p 1 0 + ? p 1 1 1 r = 1 - ? r 0 + ? r 1 , i.e., 1 p 0 - 1 p 1 = 1 r .

Now we apply Lemma 2 with fixed parameters r, s and parameters p 1 i , p 0 i , i=0,1 satisfying (4) and the inequality of type (5). We have:

( L r , s , L r , s ) ? , 1 × ( l p 0 0 , 8 , l p 0 1 , 8 ) ? , q 0 ? ( l p 1 0 , s , l p 1 1 , s ) ? , q 1

or

T: L r , s × l p 0 , q 0 ? l p 1 , q 1 ,

where 1 q 1 - 1 q 0 = 1 s - 1 8 , 1 p 1 = 1 - ? p 1 0 + ? p 1 1 , 1 p 0 = 1 - ? p 0 0 + ? p 0 1 , i.e., 1 q 1 = 1 s + 1 q 0 , 1 p 0 - 1 p 1 = 1 r .

Since the parameters p 1 i , p 0 i , i=0,1 are arbitrary in Inequality (5), it guarantees the arbitrary of the corresponding parameters in Inequality (4).

Thus, the following inequality holds:

? a * b ? l p 1 , q 1 =c ? a ? l p 0 , q 0 ? f ? L r , s ,

where b= { b m } m ? Z are Fourier coefficients of the function f and 1 r = 1 p 0 - 1 p 1 , 1 s = 1 q 1 - 1 q 0 . According to Remark, this inequality is equivalent to the statement of Theorem 1. ?

Proof of Theorem 2 Let f? M p q and Q be an arbitrary segment in [0,1],

f 0 (x)={ 1 , x ? Q , 0 , x ? Q .

Note that by Boas theorem [10] (see also [11]) we get

? f 0 ˆ ? l p ~ ? f 0 ? L p ' , p = ( ? 0 1 ( t 1 p ' f 0 * ( t ) ) p d t t ) 1 p = | Q | 1 p ' .
(6)

Applying Theorem 5 from [12] and using (6), we obtain:

? f ? M p q = sup f ? 0 ? f f ˆ ? l q ? f ˆ ? l p = ? f 0 f ˆ ? l q ? f 0 ˆ ? l p = c | Q | 1 p ' ? 0 1 ( t 1 q ' ( sup | W | = t , W ? G 1 | W | | ? W f 0 ( x ) f ( x ) d x | ) q d t t ) 1 q = c | Q | 1 p ' sup t > 0 t 1 q ' ( sup | W | = t , W ? G 1 | W | | ? W n Q f ( x ) d x | ) = c 1 | Q | 1 p ' | Q | 1 q ' - 1 | ? Q f ( x ) d x | = c 1 | Q | 1 p ' + 1 q | ? Q f ( x ) d x | .

Since the interval Q is arbitrary, we get

? f ? M p q = c 1 sup Q ? G 1 | Q | 1 p ' + 1 q | ? Q f(x)dx|,

where constants c and c 1 depend only on parameters p and q.

The proof of obtaining an upper estimate follows from Theorem 1 and the embedding l p , p ? l p , q , for p<q.

Indeed, from Theorem 1 it follows

L r , 8 ? M p q ,

i.e.,

? f ? M p q = c 2 sup t > 0 t 1 r f * ( t ) = c 3 sup t > 0 1 t 1 p ' + 1 q ? 0 t f * ( s ) d s = c 3 sup Q ? F 1 | Q | 1 p ' + 1 q ? Q | f ( x ) | d x ~ sup Q ? F 1 | Q | 1 p ' + 1 q | ? Q f ( x ) d x | .

?

Proof of Corollary 1 Let Q be an arbitrary compact from F.

From the condition of generalized monotonicity of the function f we have

1 | Q | 1 p ' + 1 q | ? Q f ( y ) d y | = 1 | Q | 1 p ' + 1 q ? Q c y | ? 0 y f ( x ) d x | d y = c | Q | 1 p ' + 1 q sup A ? G 1 | A | 1 p ' + 1 q | ? A f ( x ) d x | ? Q d y y 1 - 1 q - 1 p ' = c 1 sup A ? G 1 | A | 1 p ' + 1 q | ? A f ( x ) d x | .

Taking into account that Q?F is arbitrary, we have

sup Q ? F 1 | Q | 1 p ' + 1 q | ? Q f(x)dx|=c sup Q ? G 1 | Q | 1 p ' + 1 q | ? Q f(x)dx|.

Thus, from Theorem 2 we get

? f ? M p q ~ sup Q ? F 1 | Q | 1 p ' + 1 q | ? Q f(x)dx|~ sup t > 0 t 1 p - 1 q f * (t).

?

Proof of Theorem 3 Let 2< p 0 = p 1 <8. For a sequence of numbers a= { a m } m ? Z and a function f? L 1 [0,1] we consider the mapping T of the form T(a,f)=a*b, where b= { b m } m ? Z is the sequence of Fourier coefficients on the trigonometric system of functions f. This map is bilinear and from Karadzhov’s theorem [5] and Remark it follows that it is bounded from l 1 × B 2 , 1 1 2 to l 1 .

Since M 2 = L 8 , the mapping

T f : l 2 × L 8 ? l 2

is also bounded. Thus, for the operator T, the following is true

Then, by Lemma 4 on bilinear interpolation, we get

( l 1 , l 2 ) ? , q × ( B 2 , 1 1 2 , L 8 ) ? , 1 ? ( l 1 , l 2 ) ? , q ,

i.e., the operator T is bounded from l p , q × ( B 2 , 1 1 2 , L 8 ) ? , 1 to l p , q . In the paper [5] it is shown that B r , 1 1 r ? ( B 2 , 1 1 2 , L 8 ) ? , 1 , where 1 r = 1 - ? 2 . Thus, taking into account Theorem 5, we will get

T: l p , q × B r , 1 1 r ? l p , q ,
(7)

for 2<p<81=q=8 1 r = 1 2 - 1 p .

From Minkowski’s inequality and Parseval’s equality we get

T: l 1 × L 2 ? l 2 .

Thus, for the operator T, the following is true

Then, by Lemma 3 we get

( l p , q , l 1 ) [ ? ] × ( B r , 1 1 r , L 2 ) [ ? ] ? ( l p , q , l 2 ) [ ? ]

i.e., T is a bounded mapping from l p 0 , q 0 × B r , s a to l p 1 , q 1 , where 2< p 0 = p 1 <8, 1 r = 1 2 - 1 p 1 , a= 1 2 - 1 p 0 . The arbitrary choice of parameters guarantees the arbitrary of the parameters available in the theorem. ?

The case 1< p 0 < p 1 <2 follows from the statements proved above and the property M p 0 , q 0 p 1 , q 1 = M p 1 ' , q 1 ' p 0 ' , q 0 ' .

Proof of Theorem 4 Let 1< p 0 < p 1 =2. Let us consider the bilinear mapping T(a,f)=a*b, where b= { b m } m ? Z is the sequence of Fourier coefficients of the function f. The mapping

T: l p 0 , q 0 × L 2 ? l p 1 , q 1
(8)

is bounded according to Theorem 1. Here 1 p 0 - 1 p 1 = 1 2 , 1 q 1 - 1 q 0 = 1 2 , 1< q 1 <2< q 0 , 1< p 0 <2< p 1 . The result of Theorem 3, in the case q 0 = q 1 =1, p 0 = p 1 =p can be written as

T: l p , 1 × B t , 1 1 / t ? l p , 1 , 1 t = 1 p - 1 2 .
(9)

Applying Lemma 3 on the bilinear interpolation to (8) and (9), and taking into account the properties of the embedding of the spaces l p , q and B p , q a , we have:

T: l p 0 , 1 × B r , 1 a ? l p 1 , 8 ,
(10)

where parameters r, a, p 0 , p 1 satisfy the following conditions:

1< p 0 < p 1 =2, 1 r -a= 1 p 0 - 1 p 1 ,a> 1 p 1 - 1 2 .
(11)

Let in (11) parameter r be fixed. Using Lemma 4 on bilinear interpolation and taking into account that

( B r , 1 a 0 , B r , 1 a 1 ) ? , h = B r , h a , with a=(1-?) a 0 + a 1 ,

we get

T: l p 0 , h 1 × B r , h 2 a ? l p , h 3 ,

where 1 h 1 +1= 1 h 2 + 1 h 3 , a> 1 p 1 - 1 2 = min x ? [ 1 p 1 , 1 p 0 ] | 1 2 -x|, 1 r -a= 1 p 0 - 1 p 1 .

Therefore, with fixed a? l p 0 , 8 and r we obtain that

P a : B r , 1 a i ? l p 1 i , 8 ,

and

? P a ? B r , 1 a i ? l p 1 i , 8 = c i ? a ? l p 0 , 8 ,

where 1 r - a i = 1 p 0 - 1 p 1 i , a i > 1 p 1 i - 1 2 , i=0,1.

Using Marcinkiewicz-Calderón interpolation theorem we have

P a : B r , s a ? l p 1 , s ,

and

? P a ? B r , s a ? l p 1 , s =c ? a ? l p 0 , 8 .

Thus

T: l p 0 , 8 × B r , s a ? l p 1 , s .

To complete the proof we fix the function f and the parameters r, s, a and we choose the parameters p 0 i , p 1 i , i=0,1 satisfying (11). We use Lemma 2 to get B r , s a [0,1]? M p 0 , q 0 p 1 , q 1 . ?

The case 2= p 0 < p 1 <8, as in the proof of Theorem 3, will follow from M p 0 , q 0 p 1 , q 1 = M p 1 ' , q 1 ' p 0 ' , q 0 ' .

5 Examples demonstrating the sharpness of the results

Proposition 1 Let1< p 0 <2= p 1 , 1 r = 1 p 0 - 1 p 1 , 1 s = ( 1 q 1 - 1 q 0 ) + . If q 1 < q 0 , then for anye>0there exists f 1 ? L r , s + e such that f 1 ? M p 0 , q 0 p 1 , q 1 , if q 1 = q 0 there exists f 2 ? L r - e , 8 such that f 2 ? M p 0 , q 0 p 1 , q 1 .

Proof Let e be an arbitrary positive number, and numbers ß 1 , ß 2 be such that

ß 1 > 1 s + e , ß 2 > 1 q 0 , ß 1 + ß 2 < 1 s + 1 q 0 = 1 q 1 .

Let

and

f 1 ~ ? k = - 8 + 8 b k e 2 p i k x .

Then for m?0

Thus, ( a * b ) m =c ( | m | + 1 ) - ( 1 r ' + 1 p 0 ) + 1 |ln(|m | + 2 ) | - ß 1 - ß 2 . Since

? m = 0 + 8 ( ( ( m + 1 ) - ( 1 r ' + 1 p 0 ) + 1 | ln ( | m | + 2 ) | - ß 1 - ß 2 ) q 1 ( | m | + 1 ) ( q 1 p 1 - 1 ) ) =8,

a*b? l p 1 , q 1 , and therefore f 1 ? M p 0 , q 0 p 1 , q 1 . Since Fourier coefficients of f 1 are the sequence { b k } k ? Z it follows that f 1 ? L r , s .

To prove the second part of the proposition, we take s=8. Let numbers a 1 and a 2 be such that

a 1 > 1 ( r - e ) ' =1- 1 r - e , a 2 > 1 p 0 , a 1 + a 2 <1- 1 r + 1 p 0

(note that the last inequality does not contradict the previous two). Choosing

b k = 1 ( | k | + 1 ) a 1 , a k = 1 ( | k | + 1 ) a 2 , f 2 ~ ? k = - 8 + 8 b k e 2 p i k x ,

we can show that

a*b~ { ( | k | + 1 ) - a 1 - a 2 + 1 } k ? Z .

Hence a*b? l p 1 , q 1 , and therefore f 2 ? M p 0 q 0 p 1 q 1 . At the same time taking into account the monotonicity of the sequence { b k } k ? Z and Hardy-Littlewood theorem, we have that f 2 ? L r - e , 8 . The statement is proved. ?

Theorem 6 Let1< p 0 < p 1 <2, 1< q 1 = q 0 , 1 r -a= 1 p 0 - 1 p 1 , 1 s = 1 q 1 - 1 q 0 . Then for anye>0there exist f 1 ? B r , 8 a - e n B r - e , 8 a and f 2 ? B r , s + e a such that f 1 ? M p 0 , q 0 p 1 , q 1 , f 2 ? M p 0 , q 0 p 1 , q 1 .

Proof Let s<8 and numbers ß 1 , ß 2 be such that

ß 1 > 1 s + e , ß 2 > 1 q 0 , ß 1 + ß 2 < 1 s + 1 q 0 = 1 q 1 .

Let b= { b k } k ? Z and a= { a k } k ? Z , where

It is obvious that a? l p 0 , q 0 , and f 2 ~ ? k = - 8 + 8 b k e 2 p i k x belongs to B r , s + e a .

It is easy to show that

( a * b ) m =c ( | m | + 1 ) a - 1 r + 1 p 0 ( ln ( | m | + 2 ) ) ß 1 + ß 2

and consequently, a*b? l p 1 , q 1 . Therefore f 2 ? M p 0 , q 0 p 1 , q 1 .

To construct the function f 1 , it is sufficient to consider the sequences

b= { 1 ( | m | + 1 ) ? 1 } m ? Z ,a= { 1 ( | m | + 1 ) ? 2 } m ? Z ,

where

? 1 >max ( a - e - 1 r + 1 , a - 1 r + e + 1 ) , ? 2 > 1 p 0

and

? 1 + ? 2 <a- 1 r + 1 p 0 .

f 1 ~ ? k = - 8 + 8 b k e 2 p i k x . The proof that f 1 ? B r , 8 a - e n B r - e , 8 a , f 1 ? M p 0 , q 0 p 1 , q 1 is similar to the proof of the first part. ?

References

  1. Stechkin SB: About bilinear form. Dokl. Akad. Nauk SSSR 1950, 71(3):237–240.

    Google Scholar 

  2. Hirshman II: On multiplier transformations. Duke Math. J. 1959, 26: 221–242. 10.1215/S0012-7094-59-02623-7

    Article  MathSciNet  Google Scholar 

  3. Edelstein SL:Bounded convolutions in L p ( Z m ) and the smoothness of the symbol of the operator. Math. Notes 1977, 22(6):873–884.

    MathSciNet  Google Scholar 

  4. Birman MS, Solomyak MZ: Quantitative analysis in Sobolev embedding theorems, application to spectral theory. In Tenth Mathematical School (Summer School, Kaciveli/Nalchik, 1972). Izdanie Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev; 1974.

    Google Scholar 

  5. Karadzhov GE: Trigonometrical problems of multipliers. In Constructive Function Theory’81 (Varna, 1981). Publ. House Bulgar. Acad. Sci., Sofia; 1983:82–86.

    Google Scholar 

  6. O’Neil RO:Convolution operators and L p , q spaces. Duke Math. J. 1963, 30: 129–142. 10.1215/S0012-7094-63-03015-1

    Article  MathSciNet  Google Scholar 

  7. Tleukhanova NT, Smailov ES, Nursultanov ED: Interpolation of bilinear maps. Vestn. RUDN. Ser. Mat. 1996, 3(2):108–117.

    Google Scholar 

  8. Bergh J, Löfström J: Interpolation Spaces. An Introduction. Springer, Berlin; 1976.

    Book  Google Scholar 

  9. Stein EM: Interpolation of linear operators. Trans. Am. Math. Soc. 1956, 83: 482–492. 10.1090/S0002-9947-1956-0082586-0

    Article  Google Scholar 

  10. Boas RP: Integrability Theorem for Trigonometric Transforms. Springer, New York; 1967.

    Book  Google Scholar 

  11. Liflyand E, Tikhonov S: Extended solution of Boas’ conjecture on Fourier transforms. C. R. Math. Acad. Sci. Paris 2008, 346(21–22):1137–1142. 10.1016/j.crma.2008.07.029

    Article  MathSciNet  Google Scholar 

  12. Nursultanov ED:On the coefficients of multiple Fourier series from L p -spaces. Izv. Akad. Nauk SSSR, Ser. Mat. 2000, 64(1):95–122. Translation in Izv. Math. 64(1), 93–120 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their careful reading and valuable comments on how to improve the article. This paper was partly supported by the grant MTM 2011-27637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ainur Jumabayeva.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed equally to writing this article. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Jumabayeva, A., Smailov, E. & Tleukhanova, N. On spectral properties of the modified convolution operator. J Inequal Appl 2012, 146 (2012). https://doi.org/10.1186/1029-242X-2012-146

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-146

Keywords