Skip to main content

A new hybrid general iterative algorithm for common solutions of generalized mixed equilibrium problems and variational inclusions

Abstract

In this article, we introduce a new general iterative method for finding a common element of the set of solutions generalized for mixed equilibrium problems, the set of solution for fixed point for nonexpansive mappings and the set of solutions for the variational inclusions for β1, β2-inverse-strongly monotone mappings in a real Hilbert space. We prove that the sequence converges strongly to a common element of the above sets under some suitable conditions. Our results improve and extend the corresponding results of Marino and Xu, Su et al., Tan and Chang and some authors.

Mathematics subject Classification: 46C05; 47H09; 47H10.

1. Introduction

Let C be a closed convex subset of a real Hilbert space H with the inner product 〈·, ·〉 and the norm || · ||. Let F be a bifunction of C × C into , where is the set of real numbers, Ψ : CH be a mapping and φ:CR be a real-valued function. The generalized mixed equilibrium problem for finding x C such that

F ( x , y ) + Ψ x , y - x + φ ( y ) - φ ( x ) 0 , y C .
(1.1)

The set of solutions of (1.1) is denoted by GMEP(F, φ, Ψ), that is

GMEP ( F , φ , Ψ ) = { x C : F ( x , y ) + Ψ x , y - x + φ ( y ) - φ ( x ) 0 , y C } .

If F ≡ 0, the problem (1.1) is reduced into the mixed variational inequality of Browder type[1] for finding x C such that

Ψ x , y - x + φ ( y ) - φ ( x ) 0 , y C .
(1.2)

The set of solutions of (1.2) is denoted by MVI(C, φ, Ψ).

If Ψ ≡ 0, the problem (1.1) is reduced into the mixed equilibrium problem for finding x C such that

F ( x , y ) + φ ( y ) - φ ( x ) 0 , y C .
(1.3)

The set of solutions of (1.3) is denoted by MEP(F, φ).

If φ ≡ 0, the problem (1.3) is reduced into the equilibrium problem[2] for finding x C such that

F ( x , y ) 0 , y C .
(1.4)

The set of solutions of (1.4) is denoted by EP(F). See, e.g. [36] and the references therein.

If F ≡ 0 and φ ≡ 0, the problem (1.1) is reduced into the Hartmann-Stampacchia variational inequality[7] for finding x C such that

Ψ x , y - x 0 , y C .
(1.5)

The set of solutions of (1.5) is denoted by VI(C, Ψ).

If F ≡ 0 and Ψ ≡ 0, the problem (1.1) is reduced into the minimize problem for finding x C such that

φ ( y ) - φ ( x ) 0 , y C .
(1.6)

The set of solutions of (1.6) is denoted by Argmin(φ).

Iterative methods for nonexpansive mappings have recently been applied to solve convex minimization problems. Convex minimization problems have a great impact and influence in the development of almost all branches of pure and applied sciences. A typical problem is to minimize a quadratic function over the set of the fixed points of a nonexpansive mapping on a real Hilbert space H:

θ ( x ) = 1 2 A x , x - x , y , x F ( S ) ,
(1.7)

where A is a linear bounded operator, F(S) is the fixed point set of a nonexpansive mapping S and y is a given point in H[8].

Recall, a mapping S : CC is said to be nonexpansive if

S x - S y x - y , x , y C .

If C is bounded closed convex and S is a nonexpansive mapping of C into itself, then F(S) is nonempty [9]. A mapping S : CC is said to be a k-strictly pseudo-contraction[10] if there exists 0 ≤ k < 1 such that

S x - S y 2 x - y 2 + k ( I - S ) x - ( I - S ) y 2 , x , y C ,

where I denotes the identity operator on C. A mapping A of C into H is called monotone if

A x - A y , x - y 0 , x , y C .

A mapping A of C into H is called an α-inverse-strongly monotone if there exists a positive real number α such that

A x - A y , x - y α A x - A y 2 , x , y C .

A mapping A of C into H is called α-strongly monotone if there exists a positive real number α such that

A x - A y , x - y α x - y 2 , x , y C .

A linear bounded operator A is called strongly positive if there exists a constant γ ̄ >0 with the property

A x , x γ ̄ x 2 , x H .

A self mapping f : CC is called contraction on C if there exists a constant α (0, 1) such that

f ( x ) - f ( y ) α x - y , x , y C .

Let B : HH be a single-valued nonlinear mapping and M : H → 2Hbe a set-valued mapping. The variational inclusion problem is to find x H such that

θ B ( x ) + M ( x ) ,
(1.8)

where θ is the zero vector in H. The set of solutions of problem (1.8) is denoted by I(B, M). The variational inclusion has been extensively studied in the literature. See, e.g. [1115] and the reference therein.

A set-valued mapping M : H → 2His called monotone if for all x, y H, f M(x) and g M(y) imply 〈x - y, f - g〉 ≥ 0. A monotone mapping M is maximal if its graph G(M) := {(f, x) H × H : f M(x)} of M is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping M is maximal if and only if for (x, f) H × H, 〈x - y, f - g> 0 for all (y, g) G(M) imply f M(x).

Let B be an inverse-strongly monotone mapping of C into H and let N C v be normal cone to C at v C, i.e., N C v = {w H : 〈v - u, w〉 ≥ 0, u C}, and define

M v = B v + N C v , if v C , , if v C .

Then M is a maximal monotone and θ if and only if v VI(C, B) [16].

Let M : H → 2Hbe a set-valued maximal monotone mapping, then the single-valued mapping JM,λ: HH defined by

J M , λ ( x ) = ( I + λ M ) - 1 ( x ) , x H
(1.9)

is called the resolvent operator associated with M, where λ is any positive number and I is the identity mapping. In the worth mentioning that the resolvent operator is nonexpansive, 1-inverse-strongly monotone and that a solution of problem (1.8) is a fixed point of the operator JM,λ(I - λB) for all λ > 0 (see also [17]).

In 2000, Moudafi [18] introduced the viscosity approximation method for nonexpansive mapping and proved that if H is a real Hilbert space, the sequence {x n } defined by the iterative method below, with the initial guess x0 C is chosen arbitrarily,

x n + 1 = α n f ( x n ) + ( 1 - α n ) S x n , n 0 ,
(1.10)

where {α n } (0, 1) satisfies certain conditions, converge strongly to a fixed point of S (say x ̄ C) which is the unique solution of the following variational inequality.

In 2005, Iiduka and Takahashi [19] introduced following iterative process x0 C,

x n + 1 = α n u + ( 1 - α n ) S P C ( x n - λ n A x n ) , n 0 ,
(1.11)

where u C, {α n } (0, 1) and {λ n } [a, b] for some a, b with 0 < a < b < 2β. They proved that under certain appropriate conditions imposed on {α n } and {λ n }, the sequence {x n } converges strongly to a common element of the set of fixed points of nonexpansive mapping and the set of solutions of the variational inequality for an inverse-strongly monotone mapping (say x ̄ C) which solve some variational inequality.

In 2006, Marino and Xu [8] introduced a general iterative method for nonexpansive mapping. They defined the sequence {x n } generated by the algorithm x0 C,

x n + 1 = α n γ f ( x n ) + ( I - α n A ) S x n , n 0
(1.12)

where {α n } (0, 1) and A is a strongly positive linear bounded operator. They proved that if C = H then the sequence {x n } converges strongly to a fixed point of S (say x ̄ H) which is the unique solution of the following variational inequality.

In 2008, Su et al. [20] introduced the following iterative scheme by the viscosity approximation method in a real Hilbert space: x1, u n H

F ( u n , y ) + 1 r n y - u n , u n - x n 0 , y C , x n + 1 = α n f ( x n ) + ( 1 - α n ) S P C ( u n - λ n A u n ) ,
(1.13)

for all n , where {α n } [0, 1) and {r n } (0, ∞) satisfy some appropriate conditions. Furthermore, they proved {x n } and {u n } converge strongly to the same point z, where z = PF(S)∩VI(C,A) EP(F)f(z).

In 2011, Tan and Chang [14] introduced following iterative process for {T n : CC} be a sequence of nonexpansive mappings. Let {x n } be the sequence defined by

x n + 1 = α n x n + ( 1 - α n ) ( S P C ( ( 1 - t n ) J M , λ ( I - λ A ) T n ( I - μ B ) ) x n ) , n 0 ,
(1.14)

where {α n } (0, 1), λ (0, 2α] and μ (0, 2β]. The sequence {x n } converges strongly to a common element of the set of fixed points of nonexpansive mapping, the set of solutions of the variational inequality and the generalized equilibrium problem.

In this article, we modify by Marino and Xu [8], Su et al. [20] and Tan and Chang [14], the purpose of this article, we show that under some control conditions the sequence {x n } converges strongly to a common element of the set of fixed points of nonexpansive mappings, the solution of the generalized mixed equilibrium problems and the solution of the variational inclusions in a real Hilbert space.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. We denote weak convergence and strong convergence by notations and →, respectively. Recall that the metric (nearest point) projection P C from H onto C assigns to each x H, the unique point in P C x C satisfying the property

x - P C x = inf y C x - y .

The following characterizes the projection P C . We recall some lemmas which will be needed in the rest of this article.

Lemma 2.1. The function u C is a solution of the variational inequality (1.5) if and only if u C satisfies the relation u = P C (u - λ Ψu) for all λ > 0.

Lemma 2.2. For a given z H, u C, u = P C z u - z, v - u〉 ≥ 0, v C.

It is well known that P C is a firmly nonexpansive mapping of H onto C and satisfies

P C x - P C y 2 P C x - P C y , x - y , x , y H .
(2.1)

Moreover, P C x is characterized by the following properties: P C x C and for all x H, y C,

x - P C x , y - P C x 0 .
(2.2)

Lemma 2.3. [21]Let M : H → 2Hbe a maximal monotone mapping and let B : HH be a monotone and Lipshitz continuous mapping. Then the mapping L = M + B : H → 2His a maximal monotone mapping.

Lemma 2.4. [22]Each Hilbert space H satisfies Opial's condition, that is, for any sequence {x n } H with x n x, the inequality lim infn→∞||x n - x|| < lim infn→∞||x n - y||, hold for each y H with yx.

Lemma 2.5. [23]Assume {a n } is a sequence of nonnegative real numbers such that

a n + 1 ( 1 - γ n ) a n + δ n , n 0 ,

where {γ n } (0, 1) and {δ n } is a sequence insuch that

  1. (i)

    n = 1 γ n =.

  2. (ii)

    lim sup n δ n γ n 0 or n = 1 δ n <.

Then limn→∞a n = 0.

Lemma 2.6. [24]Let C be a closed convex subset of a real Hilbert space H and let S : CC be a nonexpansive mapping. Then I - S is demiclosed at zero, that is,

x n x , x n - S x n 0

implies x = Sx.

For solving the mixed equilibrium problem, let us assume that the bifunction F:C×CR and φ:CR satisfies the following conditions:

(A1) F(x, x) = 0 for all x C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for any x, y C;

(A3) for each fixed y C, x F(x, y) is weakly upper semicontinuous;

(A4) for each fixed x C, y F(x, y) is convex and lower semicontinuous;

(B1) for each x C and r > 0, there exist a bounded subset D x C and y x C such that for any z C \ D x ,

F ( z , y x ) + φ ( y x ) - φ ( z ) + 1 r y x - z , z - x < 0 ,

(B2) C is a bounded set.

Lemma 2.7. [25]Let C be a nonempty closed convex subset of a real Hilbert space H. LetF:C×CRbe a bifunction mapping satisfies (A1)-(A4) and letφ:CRis convex and lower semicontinuous such thatCdomφ. Assume that either (B1) or (B2) holds. For r > 0 and x H, then there exists z C such that

F ( z , y ) + φ ( y ) - φ ( z ) + 1 r y - z , z - x 0 , y C .

Define a mapping T r ( F , φ ) :HC as follows:

T r ( F , φ ) ( x ) = z C : F ( z , y ) + φ ( y ) - φ ( z ) + 1 r y - z , z - x 0 , y C

for all x H. Then, the following hold:

  1. (i)

    T r ( F , φ ) is single-valued;

  2. (ii)

    T r ( F , φ ) is firmly nonexpansive, i.e., for any x, y H,

    T r ( F , φ ) x - T r ( F , φ ) y 2 T r ( F , φ ) x - T r ( F , φ ) y , x - y ;
  3. (iii)

    F ( T r ( F , φ ) ) = MEP ( F , φ ) ;

  4. (iv)

    MEP(F, φ) is closed and convex.

Lemma 2.8. [8]Assume A is a strongly positive linear bounded operator on a Hilbert space H with coefficient γ ̄ >0and 0 < ρ ≤ ||A||-1, then I - ρ A 1-ρ γ ̄ .

Lemma 2.9. [26]Let H be a real Hilbert space and A : HH a mapping.

  1. (i)

    If A is a δ-strongly monotone and μ-strictly pseudo-contraction with δ + μ > 1, then I - A is a contraction with constant ( 1 - δ ) / μ .

  2. (ii)

    If A is a δ-strongly monotone and μ-strictly pseudo-contraction with δ + μ > 1, then for any fixed number τ (0, 1), I - τA is a contraction with constant 1-τ ( 1 - ( 1 - δ ) / μ ) .

3. Strong convergence theorems

In this section, we show a strong convergence theorem which solves the problem of finding a common element of F(S), GMEP(F1, φ1, B1), GMEP(F2, φ2, B2), I(A1, M1) and I(A2, M2).

Theorem 3.1. Let H be a real Hilbert space, C be a closed convex subset of H. Let F1, F2be bifunctions of C × C intosatisfying (A1)-(A4) and A1, A2, B1, B2 : CH be β1, β2, η, ρ-inverse-strongly monotone mappings, φ 1 , φ 2 :CRbe convex and lower semicontinuous functions, f : CC be a contraction with coefficient α (0 < α < 1), M1, M2 : H → 2Hbe maximal monotone mappings and A is a δ-strongly monotone and μ-strictly pseudo-contraction with δ + μ > 1, γ is a positive real number such thatγ< 1 α 1 - 1 - δ μ . Assume that either (B1) or (B2) holds. Let S be a nonexpansive mapping of C into itself such that

Θ : = F ( S ) GMEP ( F 1 , φ 1 , B 1 ) GMEP ( F 2 , φ 2 , B 2 ) I ( A 1 , M 1 ) I ( A 2 , M 2 ) .

Suppose {x n } is a sequences generated by the following algorithm x0 C arbitrarily:

u n = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) v n = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) x n + 1 = ξ n P C α n γ f ( x n ) + ( I - α n A ) S P C [ J M 1 , λ 1 ( 1 - λ 1 A 1 ) u n ] + ( 1 - ξ n ) P C [ J M 2 , λ 2 ( I - λ 2 A 2 ) v n ] , n 0 ,
(3.1)

where {α n }, {ξ n } (0, 1), λ1 (0, 2β1) such that 0 < a1λ1 < b1 < 2β1, λ2 (0, 2β2) such that 0 < a1λ2b2 < 2β2, r n (0, 2η) with 0 < cd ≤ 1 - η and s n (0, 2ρ) with 0 < ef ≤ 1 - ρ satisfy the following conditions:

(C1): limn→∞α n = 0, n = 0 α n =, n = 1 α n + 1 - α n <,

(C2): 0 < lim infn→∞ξ n < lim supn→∞ξ n < 1, n = 1 ξ n + 1 - ξ n <,

(C3): lim infn→∞r n > 0 and limn→∞|rn+1- r n | = 0,

(C4): lim infn→∞s n > 0 and limn→∞|sn+1- s n | = 0.

Then {x n } converges strongly to q Θ, where q = PΘ(γf + I - A)(q) which solves the following variational inequality:

( γ f - A ) q , p - q 0 , p Θ

which is the optimality condition for the minimization problem

min q Θ 1 2 A q , q - h ( q ) ,
(3.2)

where h is a potential function for γf (i.e., h'(q) = γf(q) for q H).

Proof. Since A1, A2 are β1, β2-inverse-strongly monotone mappings, we have

( I - λ 1 A 1 ) x - ( I - λ 1 A 1 ) y 2 = ( x - y ) - λ 1 ( A 1 x - A 1 y ) 2 = x - y 2 - 2 λ 1 x - y , A 1 x - A 1 y + λ 1 2 A 1 x - A 1 y 2 x - y 2 + λ 1 ( λ 1 - 2 β 1 ) A 1 x - A 1 y 2 x - y 2 .

In similar way, we can obtain

( I - λ 2 A 2 ) x - ( I - λ 2 A 2 ) y 2 x - y 2 .

And B1, B2 are η, ρ-inverse-strongly monotone mappings, we have

( I - r n B 1 ) x - ( I - r n B 1 ) y 2 = ( x - y ) - r n ( B 1 x - B 1 y ) 2 = x - y 2 - 2 r n x - y , B 1 x - B 1 y + r n 2 B 1 x - B 1 y 2 x - y 2 + r n ( r n - 2 η ) B 1 x - B 1 y 2 x - y 2 .

In similar way, we can obtain

( I - s n B 2 ) x - ( I - s n B 2 ) y 2 x - y 2 .

It is clear that if 0 < λ1 < 2β1, 0 < λ2 < 2β2, 0 < r n < 2η, 0 < s n ≤ 2ρ then I - λ1A1, I - λ2A2, I - r n B1, I - s n B2 are all nonexpansive. We will divide the proof into six steps.

Step 1. We will show {x n } is bounded. Put y n = J M 1 , λ 1 ( u n - λ 1 A 1 u n ) for all n ≥ 0 and w n = J M 2 , λ 2 ( v n - λ 2 A 2 v n ) for all n ≥ 0. It follows that

y n - q = J M 1 , λ 1 ( u n - λ 1 A 1 u n ) - J M 1 , λ 1 ( q - λ 1 A 1 q ) u n - q .
(3.3)

In similar way, we can obtain

w n - q = J M 2 , λ 2 ( v n - λ 2 A 2 v n ) - J M 2 , λ 2 ( q - λ 2 A 2 q ) v n - q .
(3.4)

Put y n = P C y n ,n0. It follows that

y n - q = P C y n - P C q y n - q .
(3.5)

By Lemma 2.7, we have u n = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) , v n = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) for all n ≥ 0. Then, we have

u n - q 2 = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) - T r n ( F 1 , φ 1 ) ( q - r n B 1 q ) 2 ( x n - r n B 1 x n ) - ( q - r n B 1 q ) 2 x n - q 2 + r n ( r n - 2 η ) B 1 x n - B 1 q 2 x n - q 2 .
(3.6)

In similar way, we can obtain

v n - q 2 = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) - T s n ( F 2 , φ 2 ) ( q - s n B 2 q ) 2 ( x n - s n B 2 x n ) - ( q - s n B 2 q ) 2 x n - q 2 + s n ( s n - 2 ρ ) B 2 x n - B 2 q 2 x n - q 2 .
(3.7)

Put z n = P C [α n γf(x n ) + (I - α n A)SP C y n ] for all n ≥ 0. From (3.1) and by Lemma 2.9

(ii), we deduce that

x n + 1 - q = ξ n ( z n - q ) + ( 1 - ξ n ) ( P C w n - q ) ξ n P C [ α n γ f ( x n ) + ( I - α n A ) S P C y n ] - P C q + ( 1 - ξ n ) P C w n - P C q ξ n α n γ f ( x n ) + ( I - α n A ) S P C y n - q + ( 1 - ξ n ) w n - q = ξ n α n ( γ f ( x n ) - A q ) + ( I - α n A ) ( S P C y n - q ) + ( 1 - ξ n ) w n - q ξ n α n γ f ( x n ) - A q + ξ n 1 - α n 1 - 1 - δ μ P C y n - q + ( 1 - ξ n ) w n - q ξ n α n γ f ( x n ) - γ f ( q ) + ξ n α n γ f ( q ) - A q + ξ n 1 - α n 1 - 1 - δ μ P C y n - q + ( 1 - ξ n ) x n - q ξ n α n γ α x n - q + ξ n α n γ f ( q ) - A q + ξ n 1 - α n 1 - 1 - δ μ y n - q + ( 1 - ξ n ) x n - q = 1 - 1 - 1 - δ μ - γ α ξ n α n x n - q + ξ n α n γ f ( q ) - A q 1 - 1 - 1 - δ μ - γ α ξ n α n x n - q + 1 - 1 - δ μ - γ α ξ n α n γ f ( q ) - A q 1 - 1 - δ μ - γ α max x n - q , γ f ( q ) - A q 1 - 1 - δ μ - γ α .
(3.8)

It follows from induction that

x n - q max x 0 - q , γ f ( q ) - A q 1 - 1 - δ μ - γ α , n 0 .

Therefore {x n } is bounded, so are {y n },{z n },{P C w n },{SP C y n },{f(x n )} and {ASP C y n }.

Step 2. We claim that limn→∞||xn+2- xn+1|| = 0. From (3.1), we have

x n + 2 - x n + 1 = ξ n + 1 z n + 1 + ( 1 - ξ n + 1 ) P C w n + 1 - ξ n z n - ( 1 - ξ n ) P C w n = ξ n + 1 ( z n + 1 - z n ) + ( ξ n + 1 - ξ n ) z n + ( 1 - ξ n + 1 ) ( P C w n + 1 - P C w n ) + ( ξ n - ξ n + 1 ) P C w n ξ n + 1 z n + 1 - z n + ( 1 - ξ n + 1 ) w n + 1 - w n + ξ n + 1 - ξ n ( z n + P C w n ) .
(3.9)

Since I - λ2A2 be nonexpansive, we have

w n + 1 - w n = J M 2 , λ 2 ( v n + 1 - λ 2 A 2 v n + 1 ) - J M 2 , λ 2 ( v n - λ 2 A 2 v n ) ( v n + 1 - λ 2 A 2 v n + 1 ) - ( v n - λ 2 A 2 v n ) v n + 1 - v n .
(3.10)

On the other hand, from v n - 1 = T s n - 1 ( F 2 , φ 2 ) ( x n - 1 - s n - 1 B 2 x n - 1 ) and v n = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) , it follows that

F 2 ( v n - 1 , y ) + B 2 x n - 1 , y - v n - 1 + φ 2 ( y ) - φ 2 ( v n - 1 ) + 1 s n - 1 y - v n - 1 , v n - 1 - x n - 1 0 , y C
(3.11)

and

F 2 ( v n , y ) + B 2 x n , y - v n + φ 2 ( y ) - φ 2 ( v n ) + 1 s n y - v n , v n - x n 0 , y C .
(3.12)

Substituting y = v n in (3.11) and y = vn-1in (3.12), we get

F 2 ( v n - 1 , v n ) + B 2 x n - 1 , v n - v n - 1 + φ 2 ( v n ) - φ 2 ( v n - 1 ) + 1 s n - 1 v n - v n - 1 , v n - 1 - x n - 1 0

and

F 2 ( v n , v n - 1 ) + B 2 x n , v n - 1 - v n + φ 2 ( v n - 1 ) - φ 2 ( v n ) + 1 s n v n - 1 - v n , v n - x n 0 .

From (A2), we obtain

v n - v n - 1 , B 2 x n - 1 - B 2 x n + v n - 1 - x n - 1 s n - 1 - v n - x n s n 0 ,

and then

v n - v n - 1 , s n - 1 ( B 2 x n - 1 - B 2 x n ) + v n - 1 - x n - 1 - s n - 1 s n ( v n - x n ) 0 ,

so

v n - v n - 1 , s n - 1 B 2 x n - 1 - s n - 1 B 2 x n + v n - 1 - v n + v n - x n - 1 - s n - 1 s n ( v n - x n ) 0 .

It follows that

v n - v n - 1 , ( I - s n - 1 B 2 ) x n - ( I - s n - 1 B 2 ) x n - 1 + v n - 1 - v n + v n - x n - s n - 1 s n ( v n - x n ) 0 , v n - v n - 1 , v n - 1 - v n + v n - v n - 1 , x n - x n - 1 + 1 - s n - 1 s n ( v n - x n ) 0 .

Without loss of generality, let us assume that there exists a real number e such that sn- 1> e > 0, for all n . Then, we have

v n - v n - 1 2 v n - v n - 1 , x n - x n - 1 + 1 - s n - 1 s n ( v n - x n ) v n - v n - 1 x n - x n - 1 + 1 - s n - 1 s n v n - x n

and hence

v n - v n - 1 x n - x n - 1 + 1 s n s n - s n - 1 v n - x n x n - x n - 1 + M 1 e s n - s n - 1 ,
(3.13)

where M1 = sup{||v n - x n || : n }. Substituting (3.13) into (3.9) and (3.10) that

x n + 2 - x n + 1 ξ n + 1 z n + 1 - z n + ( 1 - ξ n + 1 ) x n + 1 - x n + M 1 e s n - s n - 1 + ξ n + 1 - ξ n ( z n + P C w n ) .
(3.14)

By Lemma 2.9 (ii), it follow that

z n + 1 - z n = P C [ α n + 1 γ f ( x n + 1 ) + ( I - α n + 1 A ) S P C y n + 1 ] - P C [ α n γ f ( x n ) + ( I - α n A ) S P C y n ] α n + 1 γ f ( x n + 1 ) + ( I - α n + 1 A ) S P C y n + 1 - α n γ f ( x n ) - ( I - α n A ) S P C y n = α n + 1 γ ( f ( x n + 1 ) - f ( x n ) ) + ( α n + 1 - α n ) γ f ( x n ) + ( I - α n + 1 A ) ( S P C y n + 1 - S P C y n ) + ( α n - α n + 1 ) A S P C y n α n + 1 γ α x n + 1 - x n + α n + 1 - α n γ f ( x n ) + 1 - α n + 1 1 - 1 - δ μ y n + 1 - y n + α n + 1 - α n A S P C y n = α n + 1 γ α x n + 1 - x n + α n + 1 - α n ( γ f ( x n ) + A S P C y n ) + 1 - α n + 1 1 - 1 - δ μ y n + 1 - y n .
(3.15)

Since I - λ1A1 be nonexpansive, we have

y n + 1 - y n = J M 1 , λ 1 ( u n + 1 - λ 1 A 1 u n + 1 ) - J M 1 , λ 1 ( u n - λ 1 A 1 u n ) ( u n + 1 - λ 1 A 1 u n + 1 ) - ( u n - λ 1 A 1 u n ) ( I - λ 1 A 1 ) u n + 1 - ( I - λ 1 A 1 ) u n u n + 1 - u n .
(3.16)

On the other hand, from u n - 1 = T r n - 1 ( F 1 , φ 1 ) ( x n - 1 - r n - 1 B 1 x n - 1 ) and u n = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) , it follows that

F 1 ( u n - 1 , y ) + B 1 x n - 1 , y - u n - 1 + φ 1 ( y ) - φ 1 ( u n - 1 ) + 1 r n - 1 y - u n - 1 , u n - 1 - x n - 1 0 , y C
(3.17)

and

F 1 ( u n , y ) + B 1 x n , y - u n + φ 1 ( y ) - φ 1 ( u n ) + 1 r n y - u n , u n - x n 0 , y C .
(3.18)

Substituting y = u n in (3.17) and y = un-1in (3.18), we get

F 1 ( u n - 1 , u n ) + B 1 x n - 1 , u n - u n - 1 + φ 1 ( u n ) - φ 1 ( u n - 1 ) + 1 r n - 1 u n - u n - 1 , u n - 1 - x n - 1 0

and

F 1 ( u n , u n - 1 ) + B 1 x n , u n - 1 - u n + φ 1 ( u n - 1 ) - φ 1 ( u n ) + 1 r n u n - 1 - u n , u n - x n 0 .

From (A2), we obtain

u n - u n - 1 , B 1 x n - 1 - B 1 x n + u n - 1 - x n - 1 r n - 1 - u n - x n r n 0 ,

and then

u n - u n - 1 , r n - 1 ( B 1 x n - 1 - B 1 x n ) + u n - 1 - x n - 1 - r n - 1 r n ( u n - x n ) 0 ,

so

u n - u n - 1 , r n - 1 B 1 x n - 1 - r n - 1 B 1 x n + u n - 1 - u n + u n - x n - 1 - r n - 1 r n ( u n - x n ) 0 .

It follows that

u n - u n - 1 , ( I - r n - 1 B 1 ) x n - ( I - r n - 1 B 1 ) x n - 1 + u n - 1 - u n + u n - x n - r n - 1 r n ( u n - x n ) 0 , u n - u n - 1 , u n - 1 - u n + u n - u n - 1 , x n - x n - 1 + 1 - r n - 1 r n ( u n - x n ) 0 .

Without loss of generality, let us assume that there exists a real number c such that rn- 1> c > 0, for all n. Then, we have

u n - u n - 1 2 u n - u n - 1 , x n - x n - 1 + 1 - r n - 1 r n ( u n - x n ) u n - u n - 1 x n - x n - 1 + 1 - r n - 1 r n u n - x n

and hence

u n - u n - 1 x n - x n - 1 + 1 r n r n - r n - 1 u n - x n x n - x n - 1 + M 2 c r n - r n - 1 ,
(3.19)

where M2 = sup{||u n - x n || : n }. Substituting (3.19) into (3.16), we have

y n - y n - 1 x n - x n - 1 + M 2 c r n - r n - 1 .
(3.20)

Substituting (3.20) into (3.15), we obtain that

z n + 1 - z n α n + 1 γ α x n + 1 - x n + α n + 1 - α n ( γ f ( x n ) + A S P C y n ) + 1 - α n + 1 1 - 1 - δ μ x n - x n - 1 + M 2 c r n - r n - 1
(3.21)

And substituting (3.10), (3.13), (3.21) into (3.9), we get

x n + 2 - x n + 1 ξ n + 1 α n + 1 γ α x n + 1 - x n + α n + 1 - α n ( γ f ( x n ) + A S P C y n ) + 1 - α n + 1 1 - 1 - δ μ x n - x n - 1 + M 2 c r n - r n - 1 + ( 1 - ξ n + 1 ) x n - x n - 1 + M 1 e s n - s n - 1 + ξ n + 1 - ξ n ( z n + P C w n ) 1 - 1 - 1 - δ μ - γ α ξ n + 1 α n + 1 x n + 1 - x n + ( α n + 1 - α n + ξ n + 1 - ξ n ) M 3 + M 2 c r n - r n - 1 + M 1 e s n - s n - 1 ,
(3.22)

where M3 > 0 is a constant satisfying

sup n γ f ( x n ) + A S P C y n , z n + P C w n M 3 .

This together with (C1)-(C4) and Lemma 2.5, imply that

lim n x n + 2 - x n + 1 = 0 .
(3.23)

From (3.20) and (C3), we also have ||yn+1- y n || → 0 as n → ∞.

Step 3. We show the followings:

  1. (i)

    limn→∞||A 1 u n - A 1 q|| = 0;

  2. (ii)

    limn→∞||A 2 v n - A 2 q|| = 0;

  3. (iii)

    limn→∞||B 1 x n - B 1 q|| = 0;

  4. (iv)

    limn→∞||B 2 x n - B 2 q|| = 0.

For q Θ and q= J M 1 , λ 1 ( q - λ 1 A 1 q ) , then we get

y n - q 2 = J M 1 , λ 1 ( u n - λ 1 A 1 u n ) - J M 1 , λ 1 ( q - λ 1 A 1 q ) 2 ( u n - λ 1 A 1 u n ) - ( q - λ 1 A 1 q ) 2 u n - q 2 + λ 1 ( λ 1 - 2 β 1 ) A 1 u n - A 1 q 2 x n - q 2 + λ 1 ( λ 1 - 2 β 1 ) A 1 u n - A 1 q 2 .

Using (3.5), it follows that

z n - q 2 = P C [ α n γ f ( x n ) + ( I - α n A ) S y n ] - P C ( q ) 2 α n ( γ f ( x n ) - A q ) + ( I - α n A ) ( S y n - q ) 2 α n ( γ f ( x n ) - A q ) + ( I - α n A ) ( y n - q ) 2 α n ( γ f ( x n ) - A q ) + ( I - α n A ) ( y n - q ) 2 α n γ f ( x n ) - A q 2 + 1 - α n 1 - 1 - δ μ y n - q 2 + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q α n γ f ( x n ) - A q 2 + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + 1 - α n 1 - 1 - δ μ x n - q 2 + λ 1 ( λ 1 - 2 β 1 ) A 1 u n - A 1 q 2 α n γ f ( x n ) - A q 2 + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + x n - q 2 + 1 - α n 1 - 1 - δ μ λ 1 ( λ 1 - 2 β 1 ) A 1 u n - A 1 q 2 .
(3.24)

By the convexity of the norm ||·||, we have

x n + 1 - q 2 = ξ n z n + ( 1 - ξ n ) P C w n - q 2 = ξ n ( z n - q ) + ( 1 - ξ n ) ( P C w n - q ) 2 ξ n z n - q 2 + ( 1 - ξ n ) w n - q 2 .
(3.25)

Substituting (3.4), (3.7), (3.24) into (3.25), we obtain

x n + 1 - q 2 ξ n α n γ f ( x n ) - A q 2 + 2 α n 1 - α n 1 - 1 - δ μ × γ f ( x n ) - A q y n - q + x n - q 2 + 1 - α n 1 - 1 - δ μ × λ 1 ( λ 1 - 2 β 1 ) A 1 u n - A 1 q 2 + ( 1 - ξ n ) x n - q 2 = ξ n α n γ f ( x n ) - A q 2 + 2 ξ n α n 1 - α n 1 - 1 - δ μ × γ f ( x n ) - A q y n - q + ξ n x n - q 2 + ξ n 1 - α n 1 - 1 - δ μ × λ 1 ( λ 1 - 2 β 1 ) A 1 u n - A 1 q 2 + ( 1 - ξ n ) x n - q 2 .

So, we obtain

ξ n 1 - α n 1 - 1 - δ μ λ 1 ( 2 β 1 - λ 1 ) A 1 u n - A 1 q 2 ξ n α n γ f ( x n ) - A q 2 + ε n + x n - x n + 1 ( x n - q + x n + 1 - q ) ,

where ε n =2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q . Since conditions (C1), (C2) and limn→∞||xn+1-x n || = 0, then we obtain that ||A1u n - A1q|| → 0 as n → ∞. For q Θ and q= J M 2 , λ 2 ( q - λ 2 A 2 q ) , then we get

w n - q 2 = J M 2 , λ 2 ( v n - λ 2 A 2 v n ) - J M 2 , λ 2 ( q - λ 2 A 2 q ) 2 ( v n - λ 2 A 2 v n ) - ( q - λ 2 A 2 q ) 2 v n - q 2 + λ 2 ( λ 2 - 2 β 2 ) A 2 v n - A 2 q 2 x n - q 2 + λ 2 ( λ 2 - 2 β 2 ) A 2 v n - A 2 q 2 .
(3.26)

Substituting (3.24), (3.26) into (3.25), we obtain

x n + 1 - q 2 ξ n α n γ f ( x n ) - A q 2 + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + x n - q 2 + 1 - α n 1 - 1 - δ μ λ 1 ( λ 1 - 2 β 1 ) A 1 u n - A 1 q 2 + ( 1 - ξ n ) x n - q 2 + λ 2 ( λ 2 - 2 β 2 ) A 2 v n - A 2 q 2 = ξ n α n γ f ( x n ) - A q 2 + 2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + ξ n x n - q 2 + ξ n 1 - α n 1 - 1 - δ μ λ 1 ( λ 1 - 2 β 1 ) A 1 u n - A 1 q 2 + ( 1 - ξ 1 ) x n - q 2 + ( 1 - ξ n ) λ 2 ( λ 2 - 2 β 2 ) A 2 v n - A 2 q 2 .

So, we obtain

( 1 - ξ n ) λ 2 ( 2 β 2 - λ 2 ) A 2 v n - A 2 q 2 ξ n α n γ f ( x n ) - A q 2 + ε n + ξ n 1 - α n 1 - 1 - δ μ λ 1 ( λ 1 - 2 β 1 ) × A 1 u n - A 1 q 2 + x n - x n + 1 ( x n - q + x n + 1 - q ) ,

where ε n =2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q . Since conditions (C1), (C2), limn→∞||xn+1- x n || = 0 and limn→∞||A1u n - A1q|| → 0 then we obtain that ||A2v n - A2q|| → 0 as n → ∞. We consider this inequality in (3.24) that

z n - q 2 α n γ f ( x n ) - A q 2 + 1 - α n 1 - 1 - δ μ y n - q 2 + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q .
(3.27)

Substituting (3.3) and (3.6) into (3.27), we have

z n - q 2 α n γ f ( x n ) - A q 2 + 1 - α n 1 - 1 - δ μ × x n - q 2 + r n ( r n - 2 η ) B 1 x n - B 1 q 2 + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q = α n γ f ( x n ) - A q 2 + 1 - α n 1 - 1 - δ μ x n - q 2 + 1 - α n 1 - 1 - δ μ r n ( r n - 2 η ) B 1 x n - B 1 q 2 + 2 α n 1 + α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q α n γ f ( x n ) - A q 2 + x n - q 2 + 1 - α n 1 - 1 - δ μ r n ( r n - 2 η ) B 1 x n - B 1 q 2 + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q .
(3.28)

Substituting (3.4), (3.7) and (3.28) into (3.25), we obtain

x n + 1 - q 2 ξ n α n γ f ( x n ) - A q 2 + x n - q 2 + 1 - α n 1 - 1 - δ μ × r n ( r n - 2 η ) B 1 x n - B 1 q 2 + 2 α n 1 - α n 1 - 1 - δ μ × γ f ( x n ) - A q y n - q } + ( 1 - ξ n ) x n - q 2 = ξ n α n γ f ( x n ) - A q 2 + ξ n x n - q 2 + ξ n 1 - α n 1 - 1 - δ μ × r n ( r n - 2 η ) B 1 x n - B 1 q 2 + 2 ξ n α n 1 - α n 1 - 1 - δ μ × γ f ( x n ) - A q y n - q + ( 1 - ξ n ) x n - q 2 .
(3.29)

So, we also have

ξ n 1 - α n 1 - 1 - δ μ r n ( 2 η - r n ) B 1 x n - B 1 q 2 ξ n α n γ f ( x n ) - A q 2 + ε n + x n - x n + 1 ( x n - q + x n + 1 - q ) ,

where ε n =2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q . Since conditions (C1), (C2), (C3), limn→∞||xn+1- x n || = 0, then we obtain that ||B1x n - B1q|| → 0 as n → ∞. Substituting (3.4), (3.7) and (3.28) into (3.25), we obtain

x n + 1 - q 2 ξ n α n γ f ( x n ) - A q 2 + x n - q 2 + 1 - α n 1 - 1 - δ μ × r n ( r n - 2 η ) B 1 x n - B 1 q 2 + 2 α n 1 - α n 1 - 1 - δ μ × γ f ( x n ) - A q y n - q + ( 1 - ξ n ) { x n - q 2 + s n ( s n - 2 ρ ) B 2 x n - B 2 q 2 } = ξ n α n γ f ( x n ) - A q 2 + ξ n x n - q 2 + ξ n 1 - α n 1 - 1 - δ μ × r n ( r n - 2 η ) B 1 x n - B 1 q 2 + 2 ξ n α n 1 - α n 1 - 1 - δ μ × γ f ( x n ) - A q y n - q + ( 1 - ξ n ) x n - q 2 + ( 1 - ξ n ) s n ( s n - 2 ρ ) B 2 x n - B 2 q 2 = ξ n α n γ f ( x n ) - A q 2 + x n - q 2 + ξ n 1 - α n 1 - 1 - δ μ × r n ( r n - 2 η ) B 1 x n - B 1 q 2 + 2 ξ n α n 1 - α n 1 - 1 - δ μ × γ f ( x n ) - A q y n - q + ( 1 - ξ n ) s n ( s n - 2 ρ ) B 2 x n - B 2 q 2 .

So, we also have

( 1 - ξ n ) s n ( 2 ρ - s n ) B 2 x n - B 2 q 2 ξ n α n γ f ( x n ) - A q 2 + ε n + x n - x n + 1 ( x n - q + x n + 1 - q ) + ξ n 1 - α n 1 - 1 - δ μ r n ( r n - 2 η ) B 1 x n - B 1 q 2 ,

where ε n =2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q . Since conditions (C1), (C2), (C4), limn→∞||xn+1- x n || = 0 and limn→∞||B1x n - B1q|| = 0, then we obtain that ||B2x n - B2q|| → 0 as n → ∞.

Step 4. We show the followings:

  1. (i)

    limn→∞||x n - u n || = 0;

  2. (ii)

    limn→∞||u n - y n || = 0;

  3. (iii)

    limn→∞||x n - v n || = 0;

  4. (iv)

    limn→∞||v n - w n || = 0;

  5. (v)

    lim n u n - y n =0;

  6. (vi)

    lim n y n - S y n =0.

Since T r n ( F 1 , φ 1 ) is firmly nonexpansive, we observe that

u n - q 2 = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) - T r n ( F 1 , φ 1 ) ( q - r n B 1 q ) 2 ( x n - r n B 1 x n ) - ( q - r n B 1 q ) , u n - q = 1 2 ( ( x n - r n B 1 x n ) - ( q - r n B 1 q ) 2 + u n - q 2 - ( x n - r n B 1 x n ) - ( q - r n B 1 q ) - ( u n - q ) 2 ) 1 2 ( x n - q 2 + u n - q 2 - ( x n - u n ) - r n ( B 1 x n - B 1 q ) 2 ) = 1 2 ( x n - q 2 + u n - q 2 - x n - u n 2 + 2 r n B 1 x n - B 1 q , x n - u n - r n 2 B 1 x n - B 1 q 2 ) .

Hence, we have

u n - q 2 x n - q 2 - x n - u n 2 + 2 r n B 1 x n - B 1 q x n - u n .
(3.30)

Since J M 1 , λ 1 is 1-inverse-strongly monotone, we compute

y n - q 2 = J M 1 , λ 1 ( u n - λ 1 A 1 u n ) - J M 1 , λ 1 ( q - λ 1 A 1 q ) 2 ( u n - λ 1 A 1 u n ) - ( q - λ 1 A 1 q ) , y n - q = 1 2 ( ( u n - λ 1 A 1 u n ) - ( q - λ 1 A 1 q ) 2 + y n - q 2 - ( u n - λ 1 A 1 u n ) - ( q - λ 1 A 1 q ) - ( y n - q ) 2 = 1 2 ( u n - q 2 + y n - q 2 - ( u n - y n ) - λ 1 ( A 1 u n - A 1 q ) 2 ) 1 2 ( u n - q 2 + y n - q 2 - u n - y n 2 + 2 λ 1 u n - y n , A 1 u n - A 1 q - λ 1 2 A 1 u n - A 1 q 2 ) ,

which implies that

y n - q 2 u n - q 2 - u n - y n 2 + 2 λ 1 u n - y n A 1 u n - A 1 q .
(3.31)

Substitute (3.30) into (3.31), we have

y n - q 2 { x n - q 2 - x n - u n 2 + 2 r n B 1 x n - B 1 q x n - u n } - u n - y n 2 + 2 λ 1 u n - y n A 1 u n - A 1 q .
(3.32)

Substitute (3.32) into (3.27), we have

z n - q 2 α n γ f ( x n ) - A q 2 + 1 - α n 1 - 1 - δ μ { x n - q 2 - x n - u n 2 + 2 r n B 1 x n - B 1 q x n - u n - u n - y n 2 + 2 λ 1 u n - y n A 1 u n - A 1 q } + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q α n γ f ( x n ) - A q 2 + x n - q 2 - x n - u n 2 + 2 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n - u n - y n 2 + 2 1 - α n 1 - 1 - δ μ λ 1 u n - y n A 1 u n - A 1 q + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q .
(3.33)

Since T s n ( F 2 , φ 2 ) is firmly nonexpansive, we observe that

v n - q 2 = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) - T s n ( F 2 , φ 2 ) ( q - s n B 2 q ) 2 ( x n - s n B 2 x n ) - ( q - s n B 2 q ) , v n - q = 1 2 ( ( x n - s n B 2 x n ) - ( q - s n B 2 q ) 2 + v n - q 2 - ( x n - s n B 2 x n ) - ( q - s n B 2 q ) - ( v n - q ) 2 ) 1 2 ( x n - q 2 + v n - q 2 - ( x n - v n ) - s n ( B 2 x n - B 2 q ) 2 ) = 1 2 ( x n - q 2 + v n - q 2 - x n - v n 2 + 2 s n B 2 x n - B 2 q , x n - v n - s n 2 B 2 x n - B 2 q 2 ) .

Hence, we have

v n - q 2 x n - q 2 - x n - v n 2 + 2 s n B 2 x n - B 2 q x n - v n .
(3.34)

Since J M 2 , λ 2 is 1-inverse-strongly monotone, we compute

w n - q 2 = J M 2 , λ 2 ( v n - λ 2 A 2 v n ) - J M 2 , λ 2 ( q - λ 2 A 2 q ) 2 ( v n - λ 2 A 2 v n ) - ( q - λ 2 A 2 q ) , w n - q = 1 2 ( ( v n - λ 2 A 2 v n ) - ( q - λ 2 A 2 q ) 2 + w n - q 2 - ( v n - λ 2 A 2 v n ) - ( q - λ 2 A 2 q ) - ( w n - q ) 2 ) = 1 2 ( v n - q 2 + w n - q 2 - ( v n - w n ) - λ 2 ( A 2 v n - A 2 q ) 2 ) 1 2 ( v n - q 2 + w n - q 2 - v n - w n 2 + 2 λ 2 v n - w n , A 2 v n - A 2 q - λ 2 2 A 2 v n - A 2 q 2 ) ,

which implies that

w n - q 2 v n - q 2 - v n - w n 2 + 2 λ 2 v n - w n A 2 v n - A 2 q .
(3.35)

Substitute (3.34) into (3.35), we have

w n - q 2 { x n - q 2 - x n - v n 2 + 2 s n B 2 x n - B 2 q x n - v n } - v n - w n 2 + 2 λ 2 v n - w n A 2 v n - A 2 q .
(3.36)

Substitute (3.33) and (3.36) into (3.25), we obtain

x n + 1 - q 2 ξ n z n - q 2 + ( 1 - ξ n ) w n - q 2 ξ n α n γ f ( x n ) - A q 2 + x n - q 2 - x n - u n 2 - u n - y n 2 + 2 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n + 2 1 - α n 1 - 1 - δ μ λ 1 u n - y n A 1 u n - A 1 q + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + ( 1 - ξ n ) { x n - q 2 - x n - v n 2 + 2 s n B 2 x n - B 2 q x n - v n - v n - w n 2 + 2 λ 2 v n - w n A 2 v n - A 2 q } ξ n α n γ f ( x n ) - A q 2 + ξ n x n - q 2 - x n - u n 2 - u n - y n 2 + 2 ξ n 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n + 2 ξ n 1 - α n 1 - 1 - δ μ λ 1 u n - y n A 1 u n - A 1 q + 2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + ( 1 - ξ n ) x n - q 2 - x n - v n 2 + 2 ( 1 - ξ n ) s n B 2 x n - B 2 q x n - v n - v n - w n 2 + 2 ( 1 - ξ n ) λ 2 v n - w n A 2 v n - A 2 q .

Then, we derive

x n - u n 2 + u n - y n 2 + x n - v n 2 + v n - w n 2 ξ n α n γ f ( x n ) - A q 2 + x n - q 2 - x n + 1 - q 2 + 2 ξ n 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n + 2 ξ n 1 - α n 1 - 1 - δ μ λ 1 u n - y n A 1 u n - A 1 q + 2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + 2 ( 1 - ξ n ) s n B 2 x n - B 2 q x n - v n + 2 ( 1 - ξ n ) λ 2 v n - w n A 2 v n - A 2 q = ξ n α n γ f ( x n ) - A q 2 + x n + 1 - x n ( x n - q + x n + 1 - q ) + 2 ξ n 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n + 2 ξ n 1 - α n 1 - 1 - δ μ λ 1 u n - y n A 1 u n - A 1 q + 2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + 2 ( 1 - ξ n ) s n B 2 x n - B 2 q x n - v n + 2 ( 1 - ξ n ) λ 2 v n - w n A 2 v n - A 2 q .

By conditions (C1)-( C4), limn→∞||x n -xn+1|| = 0, limn→∞||B1x n -B1q|| = 0, limn→∞||B2x n -B2q|| = 0, limn→∞||A1u n - A1q|| = 0 and limn→∞||A2v n - A2q|| = 0. So, we have ||x n - u n || → 0, ||u n - y n || → 0, ||x n - v n || → 0, ||v n - w n || → 0 as n → ∞.

From (2.1), we have

y n - q 2 = P C J M 1 λ 1 ( u n - λ 1 A 1 u n ) - P C J M 1 λ 1 ( q - λ 1 A 1 q ) 2 J M 1 , λ 1 ( u n - λ 1 A 1 u n ) - J M 1 , λ 1 ( q - λ 1 A 1 q ) 2 ( u n - λ 1 A 1 u n ) - ( q - λ 1 A 1 q ) , y n ' - q = 1 2 ( ( u n - λ 1 A 1 u n ) - ( q - λ 1 A 1 q ) 2 + y n - q 2 - ( u n - λ 1 A 1 u n ) - ( q - λ 1 A 1 q ) - ( y n - q ) 2 ) = 1 2 ( u n - q 2 + y n - q 2 - ( u n - y n ' ) - λ 1 ( A 1 u n - A 1 q ) 2 ) 1 2 ( u n - q 2 + y n - q 2 - u n - y n ' 2 + 2 λ 1 u n - y n ' , A 1 u n - A 1 q - λ 1 2 A 1 u n - A 1 q 2 ) ,

which implies that

y n - q 2 u n - q 2 - u n - y n ' 2 + 2 λ 1 u n - y n ' A 1 u n - A 1 q .
(3.37)

Substitute (3.30) into (3.37), we have

y n - q 2 { x n - q 2 - x n - u n 2 + 2 r n B 1 x n - B 1 q x n - u n } - u n - y n ' 2 + 2 λ 1 u n - y n ' A 1 u n - A 1 q .
(3.38)

We consider this inequality in (3.24) that

z n - q 2 α n γ f ( x n ) - A q 2 + 1 - α n 1 - 1 - δ μ y n - q 2 + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q .
(3.39)

Substitute (3.38) into (3.39), we have

z n - q 2 α n γ f ( x n ) - A q 2 + 1 - α n 1 - 1 - δ μ { x n - q 2 - x n - u n 2 + 2 r n B 1 x n - B 1 q x n - u n - u n - y n ' 2 + 2 λ 1 u n - y n ' A 1 u n - A 1 q } + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q α n γ f ( x n ) - A q 2 + x n - q 2 - x n - u n 2 + 2 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n - u n - y n ' 2 + 2 1 - α n 1 - 1 - δ μ λ 1 u n - y n ' A 1 u n - A 1 q + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q .
(3.40)

Substitute (3.36) and (3.40) into (3.25), we obtain

x n + 1 - q 2 ξ n z n - q 2 + ( 1 - ξ n ) w n - q 2 ξ n α n γ f ( x n ) - A q 2 + x n - q 2 - x n - u n 2 - u n - y n ' 2 + 2 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n + 2 1 - α n 1 - 1 - δ μ λ 1 u n - y n ' A 1 u n - A 1 q + 2 α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + ( 1 - ξ n ) { x n - q 2 - x n - v n 2 + 2 s n B 2 x n - B 2 q x n - v n - v n - w n 2 + 2 λ 2 v n - w n A 2 v n - A 2 q } ξ n α n γ f ( x n ) - A q 2 + ξ n x n - q 2 - x n - u n 2 - u n - y n ' 2 + 2 ξ n 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n + 2 ξ n 1 - α n 1 - 1 - δ μ λ 1 u n - y n ' A 1 u n - A 1 q + 2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + ( 1 - ξ n ) x n - q 2 - x n - v n 2 + 2 ( 1 - ξ n ) s n B 2 x n - B 2 q x n - v n - v n - w n 2 + 2 ( 1 - ξ n ) λ 2 v n - w n A 2 v n - A 2 q .

Then, we derive

x n - u n 2 + u n - y n ' 2 + x n - v n 2 + v n - w n 2 ξ n α n γ f ( x n ) - A q 2 + x n - q 2 - x n + 1 - q 2 + 2 ξ n 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n + 2 ξ n 1 - α n 1 - 1 - δ μ λ 1 u n - y n ' A 1 u n - A 1 q + 2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + 2 ( 1 - ξ n ) s n B 2 x n - B 2 q x n - v n + 2 ( 1 - ξ n ) λ 2 v n - w n A 2 v n - A 2 q = ξ n α n λ f ( x n ) - A q 2 + x n + 1 - x n ( x n - q + x n + 1 - q ) + 2 ξ n 1 - α n 1 - 1 - δ μ r n B 1 x n - B 1 q x n - u n + 2 ξ n 1 - α n 1 - 1 - δ μ λ 1 u n - y n ' A 1 u n - A 1 q + 2 ξ n α n 1 - α n 1 - 1 - δ μ γ f ( x n ) - A q y n - q + 2 ( 1 - ξ n ) s n B 2 x n - B 2 q x n - v n + 2 ( 1 - ξ n ) λ 2 v n - w n A 2 v n - A 2 q .

By conditions (C1)-(C4), limn→∞||x n -xn+1|| = 0, limn→∞||B1x n -B1q|| = 0, limn→∞||B2x n -B2q|| = 0, limn→∞||A1u n - A1q|| = 0, limn→∞||A2v n - A2q|| = 0, ||x n - u n || → 0, ||x n - v n || → 0, ||v n - w n || → 0 as n → ∞. So, we have u n - y n 0. It follows that

x n - w n x n - v n + v n - w n 0 , as n .

We compute that

x n + 1 - x n = ξ n ( z n - x n ) + ( 1 - ξ n ) ( P C w n - x n ) ξ n z n - x n + ( 1 - ξ n ) w n - x n .

From limn→∞||x n - w n || = 0, limn→∞||xn+1- x n || = 0, and hence

lim n z n - x n = 0 .
(3.41)

It follows by step 4 (i) and (ii),

x n - y n x n - u n + u n - y n 0 , as n .

Since

z n - y n z n - x n + x n - y n .

So, by (3.41) and limn→∞||x n - y n || = 0, we obtain

lim n z n - y n = 0 .
(3.42)

We show S y n - z n 0 as n → ∞. By nonexpansiveness of P C notice that

S y n - z n = S y n - P C [ α n γ f ( x n ) + ( I - α n A ) S y n ] = P C S y n - P C [ α n γ f ( x n ) + ( I - α n A ) S y n ] S y n - α n γ f ( x n ) - ( I - α n A ) S y n α n γ f ( x n ) - A S y n .

By condition (C1), we get lim n S y n - z n =0. Since S y n - y n S y n - z n + z n - y n + y n - u n + u n - y n , so by (3.42), lim n S y n - z n =0, lim n y n - u n =0 and lim n u n - y n =0, we obtain lim n S y n - y n =0.

Step 5. We show that q Θ := F(S) ∩ GMEP(F1, φ1, B1) ∩ GMEP(F2, φ2, B2) ∩ I(Al, M1) ∩ I(A2, M2) and lim sup n ( γ f - A ) q , S y n - q 0. It is easy to see that PΘ(γf + (I - A)) is a contraction of H into itself. In fact, from Lemma 2.9, we have

P Θ ( γ f + ( I - A ) ) x - P Θ ( γ f + ( I - A ) ) y ( γ f + ( I - A ) ) x - ( γ f + ( I - A ) ) y γ f ( x ) - f ( y ) + ( I - A ) x - y γ α x - y + 1 - 1 - 1 - δ μ x - y = 1 - δ μ + γ α x - y .

Hence H is complete, there exists a unique fixed point q H such that q = PΘ(γf + (I - A))(q). By Lemma 2.2 we obtain that 〈(γf - A)q, w - q〉 ≤ 0 for all w Θ.

Next, we show that lim sup n ( γ f - A ) q , S y n ' - q 0, where q = PΘ(γf + I - A)(q) is the unique solution of the variational inequality 〈(γf - A)q, p - q〉 ≥ 0, p Θ. We can choose a subsequence { y n i ' } of { y n ' } such that

lim sup n ( γ f - A ) q , S y n - q = lim i ( γ f - A ) q , S y n i - q .

Since { y n i ' } is bounded, there exists a subsequence { y n i j ' } of { y n i ' } which converges weakly to w. We may assume without loss of generality that y n i w.

We claim that w Θ. Since y n - S y n 0 and by Lemma 2.6, we have w F(S).

Next, we show that w GMEP(F1, φ1, B1). Since u n = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) , we know that

F 1 ( u n , y ) + φ 1 ( y ) - φ 1 ( u n ) + B 1 x n , y - u n + 1 r n y - u n , u n - x n 0 , y C .

It follows by (A2) that

φ 1 ( y ) - φ 1 ( u n ) + B 1 x n , y - u n + 1 r n y - u n , u n - x n F 1 ( y , u n ) , y C .

Hence,

φ 1 ( y ) - φ 1 ( u n i ) + B 1 x n i , y - u n i + 1 r n i y - u n i , u n i - x n i F 1 ( y , u n i ) , y C .
(3.43)

For t (0, 1] and y H, let y t = ty + (1 - t)w. From (3.43), we have

y t - u n i , B 1 y t y t - u n i , B 1 y t - φ 1 ( y t ) + φ 1 ( u n i ) - B 1 x n i , y t - u n i - 1 r n i y t - u n i , u n i - x n i + F 1 ( y t , u n i ) = y t - u n i , B 1 y t - B 1 u n i + y t - u n i , B 1 u n i - B 1 x n i - φ 1 ( y t ) + φ 1 ( u n i ) - 1 r n i y t - u n i , u n i - x n i + F 1 ( y t , u n i ) .

From u n i - x n i 0, we have B 1 u n i - B 1 x n i 0. Further, from (A4) and the weakly lower semicontinuity of φ 1 , u n i - x n i r n i 0 and u n i w, we have

y t - w , B 1 y t - φ 1 ( y t ) + φ 1 ( w ) + F 1 ( y t , w ) .
(3.44)

From (A1), (A4) and (3.44), we have

0 = F 1 ( y t , y t ) - φ 1 ( y t ) + φ 1 ( y t ) t F 1 ( y t , y ) + ( 1 - t ) F 1 ( y t , w ) + t φ 1 ( y ) + ( 1 - t ) φ 1 ( w ) - φ 1 ( y t ) = t [ F 1 ( y t , y ) + φ 1 ( y ) - φ 1 ( y t ) ] + ( 1 - t ) [ F 1 ( y t , w ) + φ 1 ( w ) - φ 1 ( y t ) ] t [ F 1 ( y t , y ) + φ 1 ( y ) - φ 1 ( y t ) ] + ( 1 - t ) y t - w , B 1 y t = t [ F 1 ( y t , y ) + φ 1 ( y ) - φ 1 ( y t ) ] + ( 1 - t ) t y - w , B 1 y t ,

and hence

0 F 1 ( y t , y ) + φ 1 ( y ) - φ 1 ( y t ) + ( 1 - t ) y - w , B 1 y t .

Letting t → 0, we have, for each y C,

F 1 ( w , y ) + φ 1 ( y ) - φ 1 ( w ) + y - w , B 1 w 0 .

This implies that w GMEP(F1, φ1, B1). By following the same arguments, we can show that w GMEP(F2, φ2, B2).

Lastly, we show that w I(A1, M2). In fact, since A1 is a β1-inverse-strongly monotone, A1 is monotone and Lipschitz continuous mapping. It follows from Lemma 2.3 that M1 + A1 is a maximal monotone. Let (v, g) G(M1 + A1), since g - A1v M1(v). Again since y n i = J M 1 λ 1 ( u n i - λ 1 A 1 u n i ) , we have u n i - λ 1 A 1 u n i ( I + λ 1 M 1 ) ( y n i ) , that is, 1 λ 1 ( u n i - y n i - λ 1 A 1 u n i ) M 1 ( y n i ) . By virtue of the maximal monotonicity of M1 + A1, we have

v - y n i , g - A 1 v - 1 λ 1 ( u n i - y n i - λ 1 A 1 u n i ) 0 ,

and hence

v - y n i , g v - y n i , A 1 v + 1 λ ( u n i - y n i - λ 1 A 1 u n i ) = v - y n i , A 1 v - A 1 y n i + v - y n i , A 1 y n i - A 1 u n i + v - y n i , 1 λ 1 ( u n i - y n i ) .

It follows from limn→∞||u n - y n || = 0, we have limn→∞||A1u n - A1y n || = 0 and y n i w that

lim sup n v - y n , g = v - w , g 0 .

It follows from the maximal monotonicity of A1 + M1 that θ (M1 + A1)(w), that is, w I(A1, M1). By following the same arguments, we can show that w I(A2, M2). Therefore, w Θ. It follows that

lim sup n ( γ f - A ) q , S y n - q = lim i ( γ f - A ) q , S y n i - q = ( γ f - A ) q , w - q 0 .

Step 6. We prove x n q. By using (3.1), Lemma 2.9 (ii) and together with Schwarz inequality, we have

x n + 1 - q 2 = ξ n P C [ ( α n γ f ( x n ) + ( I - α n A ) S y n ) - q ] + ( 1 - ξ n ) ( P C w n - q ) 2 ξ n P C [ ( α n γ f ( x n ) + ( I - α n A ) S y n ) - P C ( q ) ] 2 + ( 1 - ξ n ) w n - q 2 ξ n α n ( γ f ( x n ) - A q ) + ( I - α n A ) ( S y n - q ) 2 + ( 1 - ξ n ) x n - q 2 ξ n ( I - α n A ) 2 S y n - q 2 + ξ n α n 2 γ f ( x n ) - A q 2 + 2 ξ n α n ( I - α n A ) ( S y n - q ) , γ f ( x n ) - A q + ( 1 - ξ n ) x n - q 2 ξ n 1 - α n 1 - 1 - δ μ 2 y n - q 2 + ξ n α n 2 γ f ( x n ) - A q 2 + 2 ξ n α n S y n - q , γ f ( x n ) - A q - 2 ξ n α n 2 A ( S y n - q ) , γ f ( x n ) - A q + ( 1 - ξ n ) x n - q 2 ξ n 1 - α n 1 - 1 - δ μ 2 x n - q 2 + ξ n α n 2 γ f ( x n ) - A q 2 + 2 ξ n α n S y n - q , γ f ( x n ) - γ f ( q ) + 2 ξ n α n S y n - q , γ f ( q ) - A q - 2 ξ n α n 2 A ( S y n - q ) , γ f ( x n ) - A q + ( 1 - ξ n ) x n - q 2 ξ n 1 - α n 1 - 1 - δ μ 2 x n - q 2 + ξ n α n 2 γ f ( x n ) - A q 2 + 2 ξ n α n S y n - q γ f ( x n ) - γ f ( q ) + 2 ξ n α n S y n - q , γ f ( q ) - A q - 2 ξ n α n 2 A ( S y n - q ) , γ f ( x n ) - A q + ( 1 - ξ n ) x n - q 2 ξ n 1 - α n 1 - 1 - δ μ 2 x n - q 2 + ξ n α n 2 γ f ( x n ) - A q 2 + 2 ξ n γ α α n y n - q x n - q + 2 ξ n α n S y n - q , γ f ( q ) - A q - 2 ξ n α n 2 A ( y n - q ) , γ f ( x n ) - A q + ( 1 - ξ n ) x n - q 2 ξ n - 2 ξ n α n 1 - 1 - δ μ + ξ n α n 2 1 - 1 - δ μ 2 x n - q 2 + ξ n α n 2 γ f ( x n ) - A q 2 + 2 ξ n γ α α n x n - q 2 + 2 ξ n α n S y n - q , γ f ( q ) - A q - 2 ξ n α n 2 A ( S y n - q ) , γ f ( x n ) - A q + ( 1 - ξ n ) x n - q 2 1 - 2 ξ n α n 1 - 1 - δ μ + 2 ξ n γ α α n x n - q 2 + α n ξ n α n γ f ( x n ) - A q 2 + 2 ξ n S y n - q , γ f ( q ) - A q - 2 ξ n α n A ( S y n - q ) γ f ( x n ) - A q + ξ n α n 1 - 1 - δ μ 2 x n - q 2 = 1 - 2 1 - 1 - δ μ - γ α ξ n α n x n - q 2 + α n ξ n α n γ f ( x n ) - A q 2 + 2 ξ n S y n - q , γ f ( q ) - A q - 2 ξ n α n A ( S y n - q ) γ f ( x n ) - A q + ξ n α n 1 - 1 - δ μ 2 x n - q 2 .

Since {x n } is bounded, where η ξ n γ f ( x n ) - A q 2 -2 ξ n A ( S y n - q ) γ f ( x n ) - A q + ξ n 1 - 1 - δ μ 2 x n - q 2 for all n ≥ 0. It follows that

x n + 1 - q 2 1 - 2 1 - 1 - δ μ - γ α ξ n α n x n - q 2 α n ς n ,

where ς n =2 ξ n S y n - q , γ f ( q ) - A q +η α n . By lim sup n ( γ f - A ) q , S y n - q 0, we get lim supn→∞ς n ≤ 0. Applying Lemma 2.5, we can conclude that x n q. This completes the proof. □

Next, the following example shows that all conditions of Theorem 3.1 are satisfied.

Example 3.2. For instance, let α n = 1 2 ( n + 1 ) , ξ n = 2 n + 2 2 ( 2 n ) , r n = n n + 1 and s n = n n + 1 , then, we will show that the sequences {α n } satisfy the condition (C1). Indeed, we take α n = 1 2 ( n + 1 ) then we have

lim n α n = lim n 1 2 ( n + 1 ) = 0
n = 1 α n = n = 1 1 2 ( n + 1 ) =

and

n = 1 α n - α n - 1 = n = 1 1 2 ( n + 1 ) - 1 2 n 1 2 . 2 - 1 2 . 1 + 1 2 . 3 - 1 2 . 2 + 1 2 . 4 - 1 2 . 3 + = 1 2 .

Then, the sequence {α n } satisfy the condition (C1).

We will show that the sequences {ξ n } satisfy the condition (C2). Indeed, we set ξ n = 2 n + 2 2 ( 2 n ) = 1 2 + 1 2 n . By similarly (C1), it is easy to see that 0 < lim infn→∞ξ n < lim supn→∞ξ n < 1 and n = 1 ξ n + 1 - ξ n <.

Next, we will show that the condition (C3) is achieves. We take r n = n n + 1 , then we compute

n = 1 r n - r n - 1 = n = 1 n n + 1 - n - 1 ( n - 1 ) + 1 = n = 1 n ( n ) - ( n - 1 ) ( n + 1 ) ( n + 1 ) n = n = 1 n 2 - n 2 + 1 ( n + 1 ) n = n = 1 1 n ( n + 1 ) .

Then, we have lim inf n r n = lim inf n n n + 1 =1 and also limn→∞|rn+1- r n | = 0.

The sequence {r n } satisfy the condition (C3). In the same way with (C4). □

Corollary 3.3. Let H be a real Hilbert space, C be a closed convex subset of H. Let F1, F2be bifunctions of C × C intosatisfying (A1)-(A4) and B, B1, B2 : CH be β, η, ρ-inverse-strongly monotone mappings, φ 1 , φ 2 :CRbe convex and lower semicontinuous functions, f : CC be a contraction with coefficient α (0 < α < 1), M : H → 2Hbe a maximal monotone mapping. Assume that either (B1) or (B2) holds. Let S be a nonexpansive mapping of C into itself such that

Θ 1 : = F ( S ) GMEP ( F 1 , φ 1 , B 1 ) GMEP ( F 2 , φ 2 , B 2 ) I ( B , M ) .

Suppose {x n } is a sequences generated by the following algorithm x0 C arbitrarily:

u n = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) v n = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) x n + 1 = ξ n P C [ α n f ( x n ) + ( I - α n ) S P C ( J M , λ ( I - λ B ) u n ) ] + ( 1 - ξ n ) P C v n ,

where {α n }, {ξ n } (0, 1), λ (0, 2β) such that 0 < aλb < 2β, r n (0, 2η) with 0 < cd ≤ 1 - η and s n (0, 2ρ) with 0 < ef ≤ 1 - ρ satisfy the following conditions:

(C1): limn→∞α n = 0, n = 0 α n =, n = 1 α n + 1 - α n <,

(C2): 0 < lim infn→∞ξ n < lim supn→∞ξ n < 1, n = 1 ξ n + 1 - ξ n <,

(C3): lim infn→∞r n > 0 and limn→∞|rn+1- r n | = 0,

(C4): lim infn→∞s n > 0 and limn→∞|sn+1- s n | = 0.

Then {x n } converges strongly to q Θ1, whereq= P Θ 1 ( f + I ) ( q ) which solves the following variational inequality:

( f - I ) q , p - q 0 , p Θ 1 .

Proof. Putting AI, γ ≡ 1, J M 2 , λ 2 I and A2 ≡ 0 in Theorem 3.1, we can obtain desired conclusion immediately. □

Corollary 3.4. Let H be a real Hilbert space, C be a closed convex subset of H. Let F1, F2be bifunctions of C × C intosatisfying (A1)-(A4) and B,B1,B2 : CH be β, η, ρ-inverse-strongly monotone mappings, φ 1 , φ 2 :CRbe convex and lower semicontinuous functions. Assume that either (B1)or (B2) holds. Let S be a nonexpansive mapping of C into itself such that

Θ 1 : = F ( S ) GMEP ( F 1 , φ 1 , B 1 ) GMEP ( F 2 , φ 2 , B 2 ) I ( B , M ) .

Suppose {x n } is a sequences generated by the following algorithm x0 C arbitrarily:

u n = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) v n = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) x n + 1 = ξ n P C [ α n u + ( I - α n ) S P C ( J M , λ ( I - λ B ) u n ) ] + ( 1 - ξ n ) P C v n ,

where {α n }, {ξ n } (0, 1), λ (0, 2β) such that 0 < aλb < 2β, r n (0, 2η) with 0 < cd ≤ 1 - η and s n (0, 2ρ) with 0 < ef ≤ 1 - ρ satisfy the following conditions:

(C1): limn→∞α n = 0, n = 0 α n =, n = 1 α n + 1 - α n <,

(C2): 0 < lim infn→∞ξ n < lim supn→∞ξ n < 1, n = 1 ξ n + 1 - ξ n <,

(C3): lim infn→∞r n > 0 and limn→∞|rn+1- r n | = 0,

(C4): lim infn→∞s n > 0 and limn→∞|sn+1- s n | = 0.

Then {x n } converges strongly to q Θ1, whereq= P Θ 1 ( q ) which solves the following variational inequality:

u - q , p - q 0 , p Θ 1 .

Proof. Putting fu C in Corollary 3.3, we can obtain desired conclusion immediately. □

Corollary 3.5. Let H be a real Hilbert space, C be a closed convex subset of H. Let F1, F2be bifunctions of C × C intosatisfying (A1)-(A4) and B,B1,B 2 : CH be β, η, ρ-inverse-strongly monotone mappings, φ 1 , φ 2 :CRbe convex and lower semicontinuous functions, f : CC be a contraction with coefficient α (0 < α < 1) and A is a δ-strongly monotone and μ-strictly pseudo-contraction with δ + μ > 1, γ is a positive real number such thatγ< 1 α 1 - 1 - δ μ . Assume that either (B1) or (B2) holds. Let S be a nonexpansive mapping of C into itself such that

Θ 2 : = F ( S ) GMEP ( F 1 , φ 1 , B 1 ) GMEP ( F 2 , φ 2 , B 2 ) V I ( C , B ) .

Suppose {x n } is a sequences generated by the following algorithm x0 C arbitrarily:

u n = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) v n = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) x n + 1 = ξ n P C [ α n γ f ( x n ) + ( I - α n A ) S P C ( I - λ B ) u n ] + ( 1 - ξ n ) P C v n ,

where {α n }, {ξ n } (0, 1), λ (0, 2β) such that 0 < aλb < 2β, r n (0, 2η) with 0 < cd ≤ 1 - η and s n (0, 2ρ) with 0 < ef ≤ 1 - ρ satisfy the following conditions:

(C1): limn→∞α n = 0, n = 0 α n =, n = 1 α n + 1 - α n <,

(C2): 0 < lim infn→∞ξ n < lim supn→∞ξ n < 1, n = 1 ξ n + 1 - ξ n <,

(C3): lim infn→∞r n > 0 and limn→∞|rn+ 1- r n | = 0,

(C4): lim infn→∞s n > 0 and limn→∞|sn+1- s n | = 0.

Then {x n } converges strongly to q Θ2, whereq= P Θ 2 ( γ f + I - A ) ( q ) which solves the following variational inequality:

( γ f - A ) q , p - q 0 , p Θ 2 .

Proof. Taking J M 1 , λ 1 I, J M 2 , λ 2 I, A 1 B and A2 ≡ 0 in Theorem 3.1, we can obtain desired conclusion immediately. □

Corollary 3.6. Let H be a real Hilbert space, C be a closed convex subset of H. Let F1, F2be bifunctions of C × C intosatisfying (A1)-(A4) and B1, B2 : CH be η, ρ-inverse-strongly monotone mappings, φ 1 , φ 2 :CRbe convex and lower semicontinuous functions, f : CC be a contraction with coefficient α (0 < α < 1). Assume that either (B1) or (B2) holds. Let S be a nonexpansive mapping of C into itself such that

Θ 3 : = F ( S ) GMEP ( F 1 , φ 1 , B 1 ) GMEP ( F 2 , φ 2 , B 2 ) .

Suppose {x n } is a sequences generated by the following algorithm x0 C arbitrarily:

u n = T r n ( F 1 , φ 1 ) ( x n - r n B 1 x n ) v n = T s n ( F 2 , φ 2 ) ( x n - s n B 2 x n ) x n + 1 = ξ n P C [ α n f ( x n ) + ( I - α n ) S P C u n ] + ( 1 - ξ n ) P C v n ,

where {α n }, {ξ n } (0, 1), r n (0, 2η) with 0 < cd ≤ 1 - η and s n (0, 2ρ) with 0 < ef ≤ 1 - ρ satisfy the following conditions:

(C1): limn→∞α n = 0, n = 0 α n =, n = 1 α n + 1 - α n <,

(C2): 0 < lim infn→∞ξ n < lim supn→∞ξ n < 1, n = 1 ξ n + 1 - ξ n <,

(C3): lim infn→∞r n > 0 and limn→∞|rn+1- r n | = 0,

(C4): lim infn→∞s n > 0 and limn→∞|sn+1- s n | = 0.

Then {x n } converges strongly to q Θ3, whereq= P Θ 3 ( f + I ) ( q ) which solves the following variational inequality:

( f - I ) q , p - q 0 , p Θ 3

Proof. Taking γ ≡ 1, AI and B ≡ 0 in Corollary 3.5, we can obtain desired conclusion immediately. □

References

  1. Browder FE: Existence and approximation of solutions of nonlinear variational inequalities. Proc Natl Acad Sci USA 1966, 56: 1080–1086. 10.1073/pnas.56.4.1080

    Article  MathSciNet  MATH  Google Scholar 

  2. Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math Student 1994, 63: 123–145.

    MathSciNet  MATH  Google Scholar 

  3. Chang SS, Lee HWJ, Chan CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal Theory Method Appl 2009, 670: 3307–3319.

    Article  MathSciNet  MATH  Google Scholar 

  4. Shehu Y: A new iterative scheme for a countable family of relatively nonex- pansive mappings and an equilibrium problem in Banach spaces. J Global Optim

  5. Ye J, Huang J: Strong convergence theorems for fixed point problems and generalized equilibrium problems of three relatively quasi-nonexpansive mappings in Banach spaces. J Math Comput Sci 2011, 1: 1–18.

    Article  MathSciNet  Google Scholar 

  6. Yang S, Li W: Iterative solutions of a system of equilibrium problems in Hilbert spaces. Adv Fixed Point Theory 2011, 1: 15–26.

    Google Scholar 

  7. Hartman P, Stampacchia G: On some nonlinear elliptic differential functional equations. Acta Math 1966, 115: 271–310. 10.1007/BF02392210

    Article  MathSciNet  MATH  Google Scholar 

  8. Marino G, Xu HK: A general iterative method for nonexpansive mapping in Hilbert space. J Math Anal Appl 2006, 318: 43–52. 10.1016/j.jmaa.2005.05.028

    Article  MathSciNet  MATH  Google Scholar 

  9. Kirk WA: Fixed point theorem for mappings which do not increase distance. Am Math Monthly 1965, 72: 1004–1006. 10.2307/2313345

    Article  MathSciNet  MATH  Google Scholar 

  10. Browder FE, Petryshym WV: Construction of fixed points of nonlinear mappings in Hilbert spaces. J Math Anal Appl 1963, 20: 197–228.

    Article  Google Scholar 

  11. Liu M, Chang SS, Zuo P: An algorithm for finding a common solution for a system of mixed equilibrium problem, quasivariational inclusion problems of nonexpansive semigroup. J Inequal Appl 2010, 23. Article ID 895907,

    Google Scholar 

  12. Hao Y: Some results of variatinal inclusion problems and fixed point problems with applications. Appl Math Mech 2009, 30(12):1589–1596. 10.1007/s10483-009-1210-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Matsushita SY, Takahashi W: Existence theorems for set-valued operators in Banach spaces. Set-Valued Anal 2007, 15: 251–264. 10.1007/s11228-006-0030-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Tan JF, Chang SS: Iterative algorithms for finding common solutions to variational inclusion equilibrium and fixed point problems. Fixed Point Theory Appl 2011, 17. Article ID 915629,

    Google Scholar 

  15. Zhang SS, Joseph Lee HW, Chan CK: Algorithms of common solutions to quasi variational inclusion and fixed point problems. Appl Math Mech 2008., 29(5):

  16. Rockafellar RT: On the maximality of sums of nonlinear monotone operators. Trans Am Math Soc 2000, 149: 46–55.

    MathSciNet  Google Scholar 

  17. Takahashi W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama; 2000.

    Google Scholar 

  18. Moudafi A: Viscosity approximation methods for fixed points problems. J Math Anal Appl 2000, 241: 46–55. 10.1006/jmaa.1999.6615

    Article  MathSciNet  MATH  Google Scholar 

  19. Iiduka H, Takahashi W: Strong convergence theorems for nonexpansive mapping and inverse-strong monotone mappings. Nonlinear Anal 2005, 61: 341–350. 10.1016/j.na.2003.07.023

    Article  MathSciNet  MATH  Google Scholar 

  20. Su Y, Shang M, Qin X: An iterative method of solution for equilibrium and optimization problems. Nonlinear Anal 2008, 69: 2709–2719. 10.1016/j.na.2007.08.045

    Article  MathSciNet  MATH  Google Scholar 

  21. Brézis H: Opérateur maximaux monotones. In Mathematics Studies. Volume 5. North-Holland, Amsterdam; 1973.

    Google Scholar 

  22. Opial Z: Weak convergence of successive approximations for nonexpansive mappings. Bull Am Math Soc 1967, 73: 591–597. 10.1090/S0002-9904-1967-11761-0

    Article  MathSciNet  MATH  Google Scholar 

  23. Xu HK: Iterative algorithms for nonlinear operators. J Lond Math Soc 2002, 66: 240–256. 10.1112/S0024610702003332

    Article  MathSciNet  MATH  Google Scholar 

  24. Browder FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces. Proc Symp Pure Math 1976, 18: 78–81.

    MathSciNet  Google Scholar 

  25. Peng J-W, Liou Y-C, Yao J-C: An iterative algorithm combining viscosity method with parallel method for a generalized equilibrium problem and strict pseudocontractions. Fixed Point Theory Appl 2009, 21. Article ID 794178,

    Google Scholar 

  26. Wangkeeree R, Bantaojai T: A general composite algorithms for solving general equilibrium problems and fixed point problems in Hilbert spaces. Thai J Math 2011, 9: 191–212.

    MathSciNet  MATH  Google Scholar 

Download references

4. Acknowledgements

The authors are grateful for the reviewers for the careful reading of the article and for the suggestions which improved the quality of this work.

This research was partially supported by the Hands-On Research and Development, Rajamangala University of Technology Lanna (under Project No. UR2L-003). Furthermore, the third authors also would like to thank the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (NRU-CSEC Project No.55000613) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Poom Kumam.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Wattanawitoon, K., Jitpeera, T. & Kumam, P. A new hybrid general iterative algorithm for common solutions of generalized mixed equilibrium problems and variational inclusions. J Inequal Appl 2012, 138 (2012). https://doi.org/10.1186/1029-242X-2012-138

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-138

Keywords