Skip to main content

Almost partial generalized Jordan derivations: a fixed point approach

Abstract

Using fixed point method, we investigate the Hyers-Ulam stability and the superstability of partial generalized Jordan derivations on Banach modules related to Jensen type functional equations.

Mathematics Subject Classification 2010: Primary, 39B52; 47H10; 47B47; 13N15; 39B72; 17C50; 39B82; 17C65.

1. Introduction and preliminaries

The following question posed by Ulam [1] in 1940: "When is it true that a mapping which approximately satisfies a functional equation E must be somehow close to an exact solution of E?". Hyers [2] proved the problem for the Cauchy functional equation. In 1978, Rassias [3] proved the following theorem.

Theorem 1.1. Let f: EE' be a mapping from a normed vector space E into a Banach space E' subject to the inequality

f ( x + y ) - f ( x ) - f ( y ) ε ( x p + y p )
(1.1)

for all x, y E, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique additive mapping T: EE' such that

f ( x ) - T ( x ) 2 ε 2 - 2 p x p
(1.2)

for all x E. If p < 0 then inequality (1.1) holds for all x, y ≠ 0, and (1.2) for x ≠ 0. Also, if the function t α f(tx) from into E' is continuous in real t for each x E, then T is -linear.

In 1991, Gajda [4] answered the question for the case p > 1, which was raised by Rassias. In 1994, a generalization of the Rassias' theorem was obtained by Găvruta as follows [5].

Stability of the Jensen functional equation, 2f x + y 2 =f ( x ) +f ( y ) , where f is a mapping between linear spaces, has been investigated by several mathematicians (see [6, 7]). During the last decades several stability problems of functional equations have been investigated by a number of mathematicians. See [817] and references therein for more detailed information.

Let A, B be two Banach algebras. A -linear mapping d: AB is called a generalized Jordan derivation if there exists a Jordan derivation (in the usual sense) δ: AX such that d(a2) = ad(a) + δ(a)a for all a A.

Generalized derivations and generalized Jordan derivations first appeared in the context of operator algebras [18]. Later, these were introduced in the framework of pure algebra [19, 20].

Recently, Badora [21] proved the stability of ring derivations (see also [22, 23]). More recently, Eshaghi Gordji and Ghobadipour [24] investigated the stability of generalized Jordan derivations on Banach algebras.

Let A 1 ,, A n be normed algebras over the complex field and let B be a Banach algebra over . A mapping d k : A 1 × A 2 ×× A n B is called a k-th partial derivation if

d k ( x 1 , , γ a k + μ b k , , x n ) = γ d k ( x 1 , , a k , , x n ) + μ d k ( x 1 , , b k , , x n )

and there exists a mapping f k : A k B such that

d k ( x 1 , , a k b k , , x n ) = f k ( a k ) d k ( x 1 , , b k , , x n ) + d k ( x 1 , , a k , , x n ) f k ( b k )

for all a k , b k A k and x i A i ( i k ) and all γ, μ .

Chu et al. [25] established the Hyers-Ulam stability of partial derivations.

Definition 1.2. Let A 1 ,, A n be normed algebras over the complex field and let X be a Banach module over A 1 ,, A n - 1 and A n . Then

  1. (i)

    A mapping d k : A 1 × A 2 ×× A n X is called a k-th partial Jordan derivation of Jensen type if

    2 d k x 1 , , γ a k + γ b k 2 , , x n = γ d k ( x 1 , , a k , , x n ) + γ d k ( x 1 , , b k , , x n )

and

d k ( x 1 , , a k 2 , , x n ) = a k d k ( x 1 , , a k , , x n ) + d k ( x 1 , , a k , , x n ) a k

for all a k , b k A k and x i A i ( i k ) and all γ .

  1. (ii)

    A mapping δ k : A 1 × A 2 ×× A n X is called a k-th partial generalized Jordan derivation of Jensen type if

    2 δ k x 1 , , γ a k + γ b k 2 , , x n = γ δ k ( x 1 , , a k , , x n ) + γ δ k ( x 1 , , b k , , x n )

and there exists a k-th partial Jordan derivation d k : A 1 × A 2 × × A n X such that

δ k ( x 1 , , a k 2 , , x n ) = δ k ( x 1 , , a k , , x n ) a k + a k d k ( x 1 , , a k , , x n )

for all a k , b k A k and x i A i ( i k ) and all γ .

We now introduce one of fundamental results of fixed point theory. For the proof, refer to [26, 27]. For an extensive theory of fixed point theorems and other nonlinear methods, the reader is referred to the book of Hyers et al. [28].

Let X be a set. A function d: X × X → [0, ] is called a generalized metric on X if and only if d satisfies:

(GM1) d(x, y) = 0 if and only if x = y;

(GM2) d(x, y) = d(y, x) for all x, y X;

(GM3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z X.

Note that the distinction between the generalized metric and the usual metric is that the range of the former is permitted to include the infinity.

Let (X, d) be a generalized metric space. An operator T: XX satisfies a Lipschitz condition with Lipschitz constant L if there exists a constant L ≥ 0 such that

d ( T x , T y ) L d ( x , y )

for all x, y X. If the Lipschitz constant L is less than 1, then the operator T is called a strictly contractive operator.

We recall the following theorem by Diaz and Margolis [26].

Theorem 1.3. Suppose that we are given a complete generalized metric space (Ω, d) and a strictly contractive function T: Ω → Ω with Lipschitz constant L. Then for each given x Ω, either

d T m x , T m + 1 x = f o r a l l m 0 ,

or other exists a natural number m 0 such that

d(Tmx, Tm+1x) < ∞ for all mm0;

the sequence {Tmx} is convergent to a fixed point y* of T;

y* is the unique fixed point of T in

Λ = { y Ω : d ( T m 0 x , y ) < } ;

d ( y , y * ) 1 1 - L d ( y , T y ) forallyΛ.

The equation (ξ) is called superstable if every approximate solution of (ξ) is an exact solution.

We use the fixed point method to investigate the Hyers-Ulam stability and the superstability of partial generalized Jordan derivations of Jensen type.

2. Main results

For n0 , we define

T 1 1 n O : = e i θ 0 θ 2 π n o

and we denote T 1 1 1 by T 1 . Also, we suppose that A 1 ,, A n are normed algebras over the complex field and X is a Banach module over A 1 ,, A n - 1 and A n . We denote that 0 k , 0 X are zero elements of A k ,X, respectively.

Theorem 2.1. Let T k , F k : A 1 ×× A n Xbe mappings with T k ( x 1 , , 0 k , , x n ) = F k ( x 1 , , 0 k , , x n ) = 0 X . Assume that there exist functions Ψ k : A k [ 0 , ) , φ k : A k 2 [ 0 , ) satisfying

2 S k x 1 , , λ a k + λ b k 2 , , x n - λ S k ( x 1 , , a k , , x n ) - λ S k ( x 1 , , b k , , x n ) φ k ( a k , b k ) ,
(2.1)
max { F k ( x 1 , , a k 2 , , x n ) - a k F k ( x 1 , , a k , , x n ) - F k ( x 1 , , a k , , x n ) a k , T k ( x 1 , , a k 2 , , x n ) - T k ( x 1 , , a k , , x n ) a k - a k F k ( x 1 , , a k , , x n ) } Ψ k ( a k )
(2.2)

for S k {F k , T k } and for all λ T 1 1 n 0 and all a k , b k A k , x i A i ( i k ) . If there exists a constant 0 < L < 1 such that φ k (a k , b k ) ≤ 2 k (2-1a k , 2-1b k ), Ψ k (a k ) ≤ 2L Ψ k (2-1a k ) for all a k , b k A k , then there exist a unique partial Jordan derivation of Jensen type with respect to k-th variable d k : A 1 × A 2 ×× A n X and a unique partial generalized Jordan derivation of Jensen type with respect to k-th variable (related to d k ) D k : A 1 × A 2 ×× A n X such that

max { F k ( x 1 , x 2 , , x n ) - d k ( x 1 , x 2 , , x n ) , T k ( x 1 , x 2 , , x n ) - D k ( x 1 , x 2 , , x n ) } L 1 - L φ k ( x k , 0 )

for all x i A i ( i = 1 , 2 , , n ) .

Proof. It follows from (2.1) that

2 S k x 1 , , λ a k + λ b k 2 , , x n - λ S k ( x 1 , , a k , , x n ) - λ S k ( x 1 , , b k , , x n ) φ k ( a k , b k ) ,
(2.3)

for S k {F k , T k } and for all λ T 1 1 n 0 : = { λ : | λ | = 1 } and all a k , b k A k , x i A i ( i k ) .

In the inequality (2.3), put S k = F k , b k = 0, λ = 1 and replace a k with 2x k . Then we obtain

F k ( x 1 , , x k , , x n ) - 2 - 1 F k ( x 1 , , 2 x k , , x n ) 2 - 1 φ k ( 2 x k , 0 ) L φ ( x k , 0 )
(2.4)

for all x i A i ( i = 1 , 2 , , n ) . Put Ω:= { G k | G k : A 1 × A 2 × × A n X } and define d: Ω × Ω → [0, ] by

d ( H k , G k ) : = inf { α + ; G k ( x 1 , , x k , , x n ) - H k ( x 1 , , x k , , x n ) α φ k ( x k , 0 ) x i A i ( i = 1 , 2 , , n ) } .

It is easy to show that (Ω, d) is a complete generalized metric space. We define the mapping J: Ω → Ω by

J ( H k ) ( x 1 , , x k , , x n ) = 2 - 1 H k ( x 1 , , 2 x k , , x n )

for all x i A i ( i = 1 , 2 , , n ) . Let G k , H k Ω and let α (0, ) be arbitrary with d(G k , H k ) ≤ α. From the definition of d, we have

G k ( x 1 , , x k , , x n ) - H k ( x 1 , , x k , , x n ) α φ k ( x k , 0 )

for all x i A i ( i = 1 , 2 , , n ) . Hence we have

( J G k ) ( x 1 , , x k , , x n ) - ( J H k ) ( x 1 , , x k , , x n ) = 2 - 1 G k ( x 1 , , 2 x k , , x n ) - H k ( x 1 , , 2 x k , , x n ) 2 - 1 α φ k ( 2 x k , 0 ) α L φ k ( x k , 0 )

for all x i A i ( i = 1 , 2 , , n ) . So

d ( J ( G k ) , J ( H k ) ) L d ( G k , H k )

for all G k , H k Ω. It follows from (2.4) that

d ( F k , J ( F k ) ) L .

By Theorem 1.3, J has a unique fixed point in the set Ω1 := { H k Ω; d(F k , H k ) < ∞}. Let d k be the fixed point of J. d k is the unique mapping which satisfies

d k ( x 1 , , 2 x k , , x n ) = 2 d k ( x 1 , , x k , , x n )

for all x i A i ( i = 1 , 2 , , n ) , and there exists α (0, ) such that

d k ( x 1 , , x k , , x n ) - F k ( x 1 , , x k , , x n ) α φ k ( x k , 0 )

for all x i A i ( i = 1 , 2 , , n ) .

On the other hand, we have limmd(Jm(F k ), d k ) = 0. It follows that

lim m 2 - m F k ( x 1 , , 2 m x k , , x n ) = d k ( x 1 , , x k , , x n )

for all x i A i ( i = 1 , 2 , , n ) . It follows from that d ( F k , d k ) 1 1 - L d ( F k , J ( F k ) ) that

d ( F k , d k ) L 1 - L .

This means that

F k ( x 1 , x 2 , , x n ) - d k ( x 1 , x 2 , , x n ) L 1 - L φ k ( x k , 0 )

for all x i A i ( i = 1 , 2 , , n ) . By the inequality φ k (a k , b k ) ≤ 2 k (2-1a k , 2-1b k ), we conclude that

lim m 2 - m φ ( 2 m a k , 2 m b k ) = 0

for all a k , b k A k . In the inequality (2.3), replacing a k , b k by 2ma k , 2mb k , respectively, we obtain that

2 - m 2 F k x 1 , , λ 2 m a k + λ 2 m b k 2 , , x n - F k ( x 1 , , 2 m a k , , x n ) - F k ( x 1 , , 2 m b k , , x n ) 2 - m φ k ( 2 m a k , 2 m b k ) .

Passing the limit m, we obtain

2 d k x 1 , , λ a k + λ b k 2 , , x n = λ d k ( x 1 , , a k , , x n ) + λ d k ( x 1 , , b k , , x n )

for all a k , b k A k and all λ T 1 1 n 0 . Now, we show that d k is -linear with respect to k-th variable. First suppose that λ belongs to T1. Then λ = e for some 0 ≤ θ ≤ 2π. We set λ 1 = e i θ n o . Then λ1 belongs to T 1 n o 1 and

2 d k x 1 , , λ 1 a k + λ 1 b k 2 , , x n = λ 1 d k ( x 1 , , a k , , x n ) + λ 1 d k ( x 1 , , b k , , x n )

for all a k , b k A k . It is easy to show that d k is additive with respect to k-th variable. Moreover, if λ belongs to nT1 = {nz z T1} then by additivity of d k on k-th variable, we have

d k ( x 1 , , λ a k , , x n ) = λ d k ( x 1 , , a k , , x n )

for all a k A k . If t (0, ∞), then by Archimedean property of , there exists an n such that the point (t, 0) lies in the interior of circle with center at origin and radius n. Let t 1 =t+ n 2 - t 2 in T 1 and t 2 =t- n 2 - t 2 in T 1 . We have t= t 1 + t 2 2 . Then

d k ( x 1 , , t a k , , x n ) = d k x 1 , , t 1 + t 2 2 a k , , x n = t 1 + t 2 2 d k ( x 1 , , a k , , x n )

for all a k A k . Let λ . Then λ=|λ| e i λ 1 and so

d k ( x 1 , , λ a k , , x n ) = | λ | e i λ 1 d k ( x 1 , , a k , , x n ) = λ d k ( x 1 , , a k , , x n )

for all a k A k . It follows that d k is -linear with respect to k-th variable.

By the same reasoning as above, we can show that the limit

D k ( x 1 , , x k , , x n ) : = lim m 2 - m T k ( x 1 , , 2 m x k , , x n )

exists for all x i A i ( i = 1 , 2 , , n ) and that D k is -linear with respect to k-th variable.

By te inequality Ψ k (a k ) ≤ 2L Ψ k (2-1a k ), we conclude that

lim m 2 - m Ψ k ( 2 m a k ) = 0

for all a k A k .

Now, by (2.2), we have

F k ( x 1 , , a k 2 , , x n ) - a k F k ( x 1 , , a k , , x n ) - F k ( x 1 , , a k , , x n ) a k Ψ k ( a k )

for all a k A k , x i A i ( i k ) . Replacing a k by 2ma k in the above inequality, we obtain that

F k ( x 1 , , 2 2 m a k 2 , , x n ) - 2 m a k F K ( x 1 , , 2 m a k , , x n ) - F k ( x 1 , , 2 m a k , , x n ) 2 m a k Ψ k ( 2 m a k ) .

Then we have

2 - 2 m F k ( x 1 , , 2 2 m a k 2 , , x n ) - 2 - m a k F K ( x 1 , , 2 m a k , , x n ) - F k ( x 1 , , 2 m a k , , x n ) 2 - m a k 2 - 2 m Ψ k ( 2 m a k )

for all a k A k . Passing m, we obtain

d k ( x 1 , , a k 2 , , x n ) = a k d k ( x 1 , , a k , , x n ) + d k ( x 1 , , a k , , x n ) a k

for all a k A k and all x i A i ( i k ) . This shows that d k is a partial Jordan derivation. We have to show that D k is a partial generalized Jordan derivation related to d k . By (2.2), we have

T k ( x 1 , , a k 2 , , x n ) - a k T k ( x 1 , , a k , , x n ) - F k ( x 1 , , a k , , x n ) a k Ψ k ( a k )

for all a k A k , x i A i ( i k ) . Replacing a k by 2ma k in the last inequality, we get

T k ( x 1 , , 2 2 m a k 2 , , x n ) - 2 m a k T K ( x 1 , , 2 m a k , , x n ) - F k ( x 1 , , 2 m a k , , x n ) 2 m a k Ψ k ( 2 m a k )

for all a k A k , x i A i ( i k ) . Then we have

2 - 2 m T k ( x 1 , , 2 2 m a k 2 , , x n ) - 2 - m a k T K ( x 1 , , 2 m a k , , x n ) - F k ( x 1 , , 2 m a k , , x n ) 2 - m a k 2 - 2 m Ψ k ( 2 m a k )

for all a k A k , x i A i ( i k ) . Passing m, we obtain that

D k ( x 1 , , a k 2 , , x n ) = a k D k ( x 1 , , a k , , x n ) + d k ( x 1 , , a k , , x n ) a k

for all a k A k and all x i A i ( i k ) . Hence D k is a partial generalized Jordan derivation related to d k .

Corollary 2.2. Let p (0, 1) and θ [0, ) be real numbers. Let T k , F k : A 1 ×× A n Xbe mappings such that T k ( x 1 , , 0 k , , x n ) = F k ( x 1 , , 0 k , , x n ) = 0 X and that

2 S k x 1 , , λ a k + λ b k 2 , , x n - λ S k ( x 1 , , a k , , x n ) - λ S k ( x 1 , , b k , , x n ) θ ( a k p + b k p ) ,
max { F k ( x 1 , , a k 2 , , x n ) - a k F k ( x 1 , , a k , , x n ) - F k ( x 1 , , a k , , x n ) a k , T k ( x 1 , , a k 2 , , x n ) - T k ( x 1 , , a k , , x n ) a k - a k F k ( x 1 , , a k , , x n ) } θ ( a k p )

for S k {F k , T k } and for all λ T 1 1 n 0 and all a k , b k A k , x i A i ( i k ) . Then there exist a unique partial Jordan derivation of Jensen type with respect to k-th variable d k : A 1 × A 2 ×× A n X and a unique partial generalized Jordan derivation of Jensen type with respect to k-th variable (related to d k ) D k : A 1 × A 2 × × A n X such that

max F k ( x 1 , x 2 , , x n ) - d k ( x 1 , x 2 , , x n ) , T k ( x 1 , x 2 , , x n ) - D k ( x 1 , x 2 , , x n ) 2 p 2 - 2 p θ x k p

for all x i A i ( i = 1 , 2 , , n ) .

Proof. It follows from Theorem 2.1 by putting Ψ k (a k ) = θ(||a k ||p), φ k (a k , b k ) = θ(|| a k ||p + ||b k ||p) and L = 2p-1. □

Theorem 2.3. Let T k , F k : A 1 ×× A n Xbe mappings with T k ( x 1 , , 0 k , , x n ) = F k ( x 1 , , 0 k , , x n ) = 0 X . Assume that there exist functions Ψ k : A k [ 0 , ) , φ k : A k 2 [ 0 , ) satisfying

2 S k x 1 , , λ a k + λ b k 2 , , x n - λ S k ( x 1 , , a k , , x n ) - λ S k ( x 1 , , b k , , x n ) , φ k ( a k , b k ) ,
max { F k ( x 1 , , a k 2 , , x n ) - a k F k ( x 1 , , a k , , x n ) - F k ( x 1 , , a k , , x n ) a k , T k ( x 1 , , a k 2 , , x n ) - T k ( x 1 , , a k , , x n ) a k - a k F k ( x 1 , , a k , , x n ) } Ψ k ( a k )

for S k {F k , T k } and for all λ T 1 1 n 0 and all a k , b k A k , x i A i ( i k ) . If there exists a constant 0 < L < 1 such that φ k (a k , b k ) ≤ 2-1 k (2a k , 2b k ), Ψ k (a k ) ≤ 2-1L Ψ k (2a k ) for all a k , b k A k , then there exist a unique partial Jordan derivation of Jensen type with respect to k-th variable d k : A 1 × A 2 × × A n X and a unique partial generalized Jordan derivation of Jensen type with respect to k-th variable (related to d k ) D k : A 1 × A 2 × × A n X such that

max { F k ( x 1 , x 2 , , x n ) - d k ( x 1 , x 2 , , x n ) , T k ( x 1 , x 2 , , x n ) - D k ( x 1 , x 2 , , x n ) } L 2 - 2 L φ k ( 2 x k , 0 )

for all x i A i ( i = 1 , 2 , , n ) .

Proof. The proof is similar to the proof of Theorem 2.1. □

Corollary 2.4. Let p (1, ) and θ [0, ) be real numbers. Let T k , F k : A 1 ×× A n Xbe mappings such that T k ( x 1 , , 0 k , , x n ) = F k ( x 1 , , 0 k , , x n ) = 0 X and

2 S k x 1 , , λ a k + λ b k 2 , , x n - λ S k ( x 1 , , a k , , x n ) - λ S k ( x 1 , , b k , , x n ) θ ( a k p + b k p ) ,
max { F k ( x 1 , , a k 2 , , x n ) - a k F k ( x 1 , , a k , , x n ) - F k ( x 1 , , a k , , x n ) a k , T k ( x 1 , , a k 2 , , x n ) - T k ( x 1 , , a k , , x n ) a k - a k F k ( x 1 , , a k , , x n ) } θ ( a k p )

for S k {F k , T k } and for all λ T 1 1 n 0 and all a k , b k A k , x i A i ( i k ) . Then there exist a unique partial Jordan derivation of Jensen type with respect to k-th variable d k : A 1 × A 2 ×× A n X and a unique partial generalized Jordan derivation of Jensen type with respect to k-th variable (related to d k ) D k : A 1 × A 2 ×× A n X such that

max { F k ( x 1 , x 2 , , x n ) - d k ( x 1 , x 2 , , x n ) , T k ( x 1 , x 2 , , x n ) - D k ( x 1 , x 2 , , x n ) } θ 1 - 2 p - 1 x k p

for all x i A i ( i = 1 , 2 , , n ) .

Proof. It follows from Theorem 2.3 by putting Ψ k (a k )=θ(||a k ||p), φ k (a k , b k ) = θ(||a k ||p+ ||b k ||p) and L = 21-pfor each a k , b k A k . □

Moreover, we have the following result for the superstability of partial generalized Jordan derivations of Jensen type.

Corollary 2.5. Let p ( 0 , 1 2 ) and θ [0, ) be real numbers. Let T k , F k : A 1 ×× A n X be mappings such that T k ( x 1 , , 0 k , , x n ) = F k ( x 1 , , 0 k , , x n ) = 0 X and

2 S k x 1 , , λ a k + λ b k 2 , , x n - λ S k ( x 1 , , a k , , x n ) - λ S k ( x 1 , , b k , , x n ) θ ( a k p b k p ) ,
max { F k ( x 1 , , a k 2 , , x n ) - a k F k ( x 1 , , a k , , x n ) - F k ( x 1 , , a k , , x n ) a k , T k ( x 1 , , a k 2 , , x n ) - T k ( x 1 , , a k , , x n ) a k - a k F k ( x 1 , , a k , , x n ) } θ ( a k p )

for S k {F k , T k }and for all λ T 1 1 n 0 and all a k , b k A k , x i A i ( i k ) . Then F k is a partial Jordan derivation of Jensen type with respect to k-th variable and T k is a partial generalized Jordan derivation of Jensen type with respect to k-th variable (related to F k ).

Proof. It follows from Theorem 2.1 by putting Ψ k (a k )=θ(||a k ||p), φ k (a k , b k ) = θ(||a k ||p+ ||b k ||p), and L = 22p- 1. □

References

  1. Ulam SM: A Collection of the Mathematical Problems. Interscience Publ., New York; 1960.

    Google Scholar 

  2. Hyers DH: On the stability of the linear functional equation. Proc Natl Acad Sci USA 1941, 27: 222–224. 10.1073/pnas.27.4.222

    Article  MathSciNet  MATH  Google Scholar 

  3. Rassias TM: On the stability of the linear mapping in Banach spaces. Proc Am Math Soc 1978, 72: 297–300. 10.1090/S0002-9939-1978-0507327-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Gajda Z: On stability of additive mappings. Int J Math Math Sci 1991, 14: 431–434. 10.1155/S016117129100056X

    Article  MathSciNet  MATH  Google Scholar 

  5. Găvruta P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J Math Anal Appl 1994, 184: 431–436. 10.1006/jmaa.1994.1211

    Article  MathSciNet  MATH  Google Scholar 

  6. Cădariu L, Radu V: Fixed points and the stability of Jensen's functional equation. J Inequal Pure Appl Math 2003, 4: 7. no. 1, 7 (Article ID 4)

    MATH  Google Scholar 

  7. Kominek Z: On a local stability of the Jensen functional equation. Demonstratio Math 1989, 22: 499–507.

    MathSciNet  MATH  Google Scholar 

  8. Czerwik S: Stability of Functional Equations of Ulam-Hyers-Rassias Type. Hadronic Press, Palm Harbor, FL; 2003.

    Google Scholar 

  9. Jung S: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press lnc, Palm Harbor, FL; 2001.

    Google Scholar 

  10. Najati A, Kang J, Cho Y: Local stability of the pexiderized Cauchy and Jensen's equations in fuzzy spaces. J Inequal Appl 2011, 2011: 8. Article No. 78 10.1186/1029-242X-2011-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Rassias TM: On the stability of the quadratic functional equation and its applications. Studia Univ Babes-Bolyai 1998, XLIII: 89–124.

    MathSciNet  MATH  Google Scholar 

  12. Rassias TM: The problem of S.M. Ulam for approximately multiplicative mappings. J Math Anal Appl 2000, 246: 352–378. 10.1006/jmaa.2000.6788

    Article  MathSciNet  MATH  Google Scholar 

  13. Rassias TM: On the stability of functional equations in Banach spaces. J Math Anal Appl 2000, 251: 264–284. 10.1006/jmaa.2000.7046

    Article  MathSciNet  MATH  Google Scholar 

  14. Rassias TM: On the stability of functional equations and a problem of Ulam. Acta Appl Math 2000, 62: 23–130. 10.1023/A:1006499223572

    Article  MathSciNet  MATH  Google Scholar 

  15. Rassias TM, Šemrl P: On the behaviour of mappings which do not satisfy Hyers-Ulam stability. Proc Am Math Soc 1992, 114: 989–993. 10.1090/S0002-9939-1992-1059634-1

    Article  MATH  Google Scholar 

  16. Ulam TM, Šemrl P: On the Hyers-Ulam stability of linear mappings. J Math Anal Appl 1993, 173: 325–338. 10.1006/jmaa.1993.1070

    Article  MathSciNet  MATH  Google Scholar 

  17. Rassias TM, Shibata K: Variational problem of some quadratic functionals in complex analysis. J Math Anal Appl 1998, 228: 234–253. 10.1006/jmaa.1998.6129

    Article  MathSciNet  MATH  Google Scholar 

  18. Mathieu M: Elementary Operators & Applications. World Scientific, NJ; 1992.

    Chapter  Google Scholar 

  19. Feng W, Zhankui X: Generalized Jordan derivations on semiprime rings. Demonstratio Math 2007, 40: 789–798.

    MathSciNet  MATH  Google Scholar 

  20. Hvala B: Generalized derivations. Commun Algebra 1998, 26: 1147–1166. 10.1080/00927879808826190

    Article  MathSciNet  MATH  Google Scholar 

  21. Badora R: On approximate derivations. Math Inequal Appl 2006, 9: 167–173.

    MathSciNet  MATH  Google Scholar 

  22. Eshaghi Gordji M, Moslehian MS: A trick for investigation of approximate derivations. Math Commun 2010, 15: 99–105.

    MathSciNet  MATH  Google Scholar 

  23. Miura T, Hirasawa G, Takahasi SE: A perturbation of ring derivations on Banach algebras. J Math Anal Appl 2006, 319: 522–530. 10.1016/j.jmaa.2005.06.060

    Article  MathSciNet  MATH  Google Scholar 

  24. Eshaghi Gordji M, Ghobadipour N: Nearly generalized Jordan derivations. Math Slovaca 2011, 61: 55–62. 10.2478/s12175-010-0059-x

    Article  MathSciNet  MATH  Google Scholar 

  25. Chu H, Ku S, Park J: Partial stabilities and partial derivations of n -variable functions. Nonlinear Anal TMA 2010, 72: 1531–1541. 10.1016/j.na.2009.08.038

    Article  MathSciNet  MATH  Google Scholar 

  26. Diaz JB, Margolis B: A fixed point theorem of the alternative for the contractions on generaliuzed complete metric space. Bull Am Math Soc 1968, 74: 305–309. 10.1090/S0002-9904-1968-11933-0

    Article  MathSciNet  MATH  Google Scholar 

  27. Rus IA: Principles and Applications of Fixed Point Theory. 1979.

    Google Scholar 

  28. Hyers DH, Isac G, Rassias TM: Stability of Functional Equations in Several Variables. Birkhäuser, Basel 1998.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Daejin University Research Grants in 2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Rye Lee.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors conceived of the study, participated in its design and coordination, drafted the manuscript, participated in the sequence alignment, and read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Gordji, M.E., Park, C. & Lee, J.R. Almost partial generalized Jordan derivations: a fixed point approach. J Inequal Appl 2012, 119 (2012). https://doi.org/10.1186/1029-242X-2012-119

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-119

Keywords