Skip to main content

Convergence of iterative sequences for fixed points of an infinite family of nonexpansive mappings based on a hybrid steepest descent methods

Abstract

The propose of this article is to consider the strong convergence of an iterative sequences for finding a common element of the set of fixed points of an infinite family of nonexpansive mappings, the set of solutions of the variational inequalities for inverse strongly monotone mappings, and the set of solutions of system of equilibrium problems in Hilbert spaces by using a hybrid steepest descent methods. Our results improve and generalize many known corresponding results.

AMS (2000) Subject Classification: 46C05; 47H09; 47H10.

1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by 〈·,·〉 and ||·||, respectively. Let C be a nonempty closed convex subset of H and let F: C × C be a bifunction, where is the set of real numbers. The equilibrium problem for F: C × C is to find x* C such that

F ( x * , y ) 0 , y C .
(1.1)

The set of solutions of (1.1) is denoted by EP(F).

Let {F i , i = 1, 2,..., N} be a finite family of bifunctions from C × C into , where is the set of real numbers. The system of equilibrium problems for {F1, F2,..., F N } is to find a common element x* C such that

F 1 ( x * , y ) 0 , y C , F 2 ( x * , y ) 0 , y C , F N ( x * , y ) 0 , y C .
(1.2)

We denote the set of solutions of (1.2) by i = 1 N SEP ( F i ) , where SEP(F i ) is the set of solutions to the equilibrium problems, that is,

F i ( x * , y ) 0 , y C .
(1.3)

If N = 1, then the problem (1.2) is reduced to the equilibrium problems.

If N = 1 and F(x*,y) = 〈Bx*, y - x*〉, then the problem (1.2) is reduced to the variational inequality problems of finding x* C such that

B x * , y - x * 0 , y C .
(1.4)

The set of solutions of (1.4) is denoted by VI(C, B).

Many problems in applied sciences, such as monotone inclusion problems, saddle point problems, optimization problems, variational inequality problems, Nash equilibrium problems, and equilibrium problems as special cases. Some methods have been proposed to solve VI(C, B), EP(F), and SEP(F i ); see, for example [122] and references therein. The above formulations (1.2) extends this formulism to such problems, covering in particular various forms of feasibility problems [23, 24].

Let P C be the metric projection of H onto the closed convex subset C. Let S: CC be a nonexpansive mapping, that is, ||Sx - Sy|| ≤ ||x - y|| for all x, y C. The set of fixed points of S is denoted by F(S) = {x C: Sx = x}. If C H is nonempty, bounded, closed and convex and S is a nonexpansive mapping of C into itself, then F(S) is nonempty; see, for example, [25, 26]. A mapping f: CC is a contraction on C if there exists a constant η (0,1) such that ||f(x) - f(y)|| ≤ η||x - y|| for all x, y C.

Definition 1.1. Let B: CH be nonlinear mappings. Then B is called

  1. (1)

    monotone if 〈Bx - By, x - y〉 ≥ 0, x, y C,

  2. (2)

    ξ-inverse-strongly monotone if there exists a constant ξ > 0 such that

    B x - B y , x - y ξ B x - B y 2 , x , y C .
  3. (3)

    A set-valued mapping Q: H → 2His called monotone if for all x, y H, f Qx and g Qy imply 〈x - y, f - g〉 ≥ 0. A monotone mapping Q: H → 2His called maximal monotone, if it is monotone and if for any (x, f) H × H

    x - y , f - g 0 , ( y , g ) G r a p h ( Q )

(the graph of mapping Q) implies that f Qx.

A typical problem is to minimize a quadratic function over the set of fixed points of a nonexpansive mapping defined on a real Hilbert space H:

min x F 1 2 A x , x - x , b ,

where F is the fixed point set of a nonexpansive mapping S defined on H and b is a given point in H.

A linear bounded operator A is strong positive if there exists a constant γ ̄ >0 with the property

A x , x γ ̄ x 2 , x H .

Marino and Xu [27] introduced a new iterative scheme by the viscosity approximation method:

x n + 1 = ε n γ f ( x n ) + ( 1 - ε n A ) S x n .
(1.5)

They proved that the sequences {x n } generated by (1.5) converges strongly to the unique solution of the variational inequality:

γ f z - A z , x - z 0 , x F ( S ) ,

which is the optimality condition for the minimization problem:

min x F ( S ) 1 2 A x , x - h ( x ) ,
(1.6)

where h is a potential function for γf.

In order to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of variational inequalities for a ξ-inverse-strongly monotone mapping, Takahashi and Toyoda [28] introduced the following iterative scheme:

x 0 C chosen arbitrary , x n + 1 = γ n x n + ( 1 - γ n ) S P C ( x n - α n B x n ) , n 0 ,
(1.7)

where B is a ξ-inverse-strongly monotone mapping, {γ n } is a sequence in (0, 1), and {α n } is a sequence in (0,2ξ). They showed that if F(S) VI(C,B) is nonempty, then the sequence {x n } generated by (1.7) converges weakly to some z F(S) VI(C, B).

In order to find a common element of F(S) VI(C, B), let S: HH be a nonexpansive mapping, Yamada [29] introduced the following iterative scheme called the hybrid steepest descent method:

x n + 1 = S x n - α n μ B S x n , n 1 ,
(1.8)

where x1 = x H, {α n } (0,1), let B: HH be a strongly monotone and Lipschitz continuous mapping and μ is a positive real number. He proved that the sequence {x n } generated by (1.8) converges strongly to the unique solution of the F(S) VI(C, B).

Let C be a nonempty closed convex subset of H. Given r > 0 the operators J r F :HC defined by

J r F ( x ) = z C : F ( z , y ) + 1 r y - z , z - x 0 , y C ,

is called the resolvent of F (see [3]). It is shown in [3] that under suitable hypotheses on F (to be stated precisely in Section 2), J r F :HC is single-valued and firmly nonexpansive and satisfied

F ( J r F ) = E P ( F ) , r > 0 .

Using the result, in 2009, Colao et al. [10] introduced and considered an implicit iterative scheme for finding a common element of the set of solutions of the system equilibrium problems and the set of common fixed points of an infinite family of nonexpansive mappings on C. Starting with an arbitrary initial x0 C and defining a sequence {z n } recursively by

x n = ε n γ f ( x n ) + ( 1 - ε n A ) W n J r M , n F M J r M - 1 , n F M - 1 J r M - 2 , n F M - 2 J r 2 , n F 2 J r 1 , n F 1 x n ,
(1.9)

where {ϵ n } be a sequences in (0,1). It is proved [10] that under certain appropriate conditions imposed on {ϵ n } and {r n }, the sequence {x n } generated by (1.9) converges strongly to z n = 1 F ( T n ) ( k = 1 M S E P ( F k ) ) , where z is the unique solution of the variational inequality and which is the optimality condition for the minimization problem.

In 2010, Colao and Marino [30] introduced the following explicit viscosity scheme with respect to W-mappings for an infinite family of nonexpansive mappings

x n + 1 = ε n γ f ( x n ) + β n x n + ( ( 1 - β n ) I - ε n A ) W n J r n F x n .
(1.10)

They prove that sequence {x n } and { J r n F } converge strongly to z n = 1 F ( T n ) EP ( F ) , where z is an equilibrium point for F and is the unique solution of the variational inequality:

γ f z - A z , x - z 0 , x n = 1 F ( T n ) E P ( F )

or, equivalently, the unique solution of the minimization problem

min x n = 1 F ( T n ) E P ( F ) 1 2 A x , x - h ( x ) ,

where h is a potential function for γf. Recently, Chantarangsi et al. [11] introduced some iterative processes based on the viscosity hybrid steepest descent method for finding a common solutions of a generalized mixed equilibrium problem, the set of fixed points of a nonexpansive mapping and the set of solutions of variational inequality problem in a real Hilbert space.

In this article, motivated by above results, we introduce an iterative scheme for finding a common element of the set of solutions of system of equilibrium problems, the set of fixed points of an infinite family of nonexpansive mapping, and the set of solutions of variational inequality problems for inverse strongly monotone mapping in a real Hilbert space by using a new hybrid steepest descent methods. The results shown in this article improve and extend the recent ones announced by many others.

2. Preliminaries

Let H be a real Hilbert space, when {x n } is a sequence in H, we denote strong convergence of {x n } to x H by x n x and weak convergence by x n x. Let C be nonempty closed convex subset of H. The nearest point projection P C : HC defined from H onto C is the function which assigns to each x H its nearest point denoted by P C x in C. Thus, P C x is the unique point in C such that ||x - P C x|| ≤ ||x - y||, y C. It easy to see that P C is nonexpansive and

x * V I ( C , B ) x * = P C ( x * - λ B x * ) , λ > 0 .
(2.1)

Lemma 2.1. [26] Let H be a Hilbert space, let C be a nonempty closed convex subset of H. Let ξ > 0 and let A: CH be ξ-inverse strongly monotone. If 0 < ϱ ≤ 2ξ, then I - ϱB is a nonexpansive mapping of C into H.

Lemma 2.2. [26] Let H be a real Hilbert spaces, there hold the following identities:

  1. (i)

    for each x H and x* C, x* = P C x x - x*, y - x*〉 ≤ 0 for all y C;

  2. (ii)

    P C : HC is nonexpansive, that is, ||P C x - P C y|| ≤ ||x - y|| for all x, y H;

  3. (iii)

    P C is firmly nonexpansive, that is, ||P C x - P C y||2 ≤ 〈P C x - P C y, x - yfor all x,y H;

  4. (iv)

    ||tx + (1 - t)y||2 = t||x||2 + (1 - t)||y||2 - t(1 - t)||x - y||2, t [0,1], for all x,y H;

  5. (v)

    ||x + y||2 ≤ ||x||2 + 2〈y,x + y〉.

Lemma 2.3. [31] Each Hilbert space H satisfies Opial's condition, that is, for any sequence {x n } H with x n x, the inequality

lim inf n x n - x < lim inf n x n - y ,

hold for each y H with yx.

Lemma 2.4. [27] Let C be a nonempty closed convex subset of H and let f be a contraction of H into itself with η (0,1), and A be a strongly positive linear bounded operator on H with coefficient γ ̄ >0. Then, for 0<γ< γ ̄ η ,

x - y , ( A - γ f ) x - ( A - γ f ) y ( γ ̄ - η γ ) x - y 2 , x , y H .

That is, A - γf is a strongly monotone with coefficient γ ̄ -γη.

Lemma 2.5. [27] Assume A be a strongly positive linear bounded operator on H with coefficient γ ̄ >0 and 0 < ρ ≤ ||A||-1. Then I - ρ A 1-ρ γ ̄ .

Throughout this article, we assume that a bifunction F : C × C satisfies the following conditions:

(A1) F(x, x) = 0 for all x C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for all x, y C;

(A3) for each x, y, z C, limt↓0F(tz + (1 - t)x, y) ≤ F(x, y);

(A4) for each x C, y F(x, y) is convex and lower semicontinuous.

Then, we have the following lemmas.

Lemma 2.6. [1] Let C be a nonempty closed convex subset of H and let F be a bifunction of C × C into satisfying (A1)-(A4). Let r > 0 and x H. Then, there exists z C such that

F ( z , y ) + 1 r y - z , z - x 0 , y C .

Lemma 2.7. [3] Assume that F : C × C satisfies (A1)-(A4). For r > 0 and x H, define a mapping J r F :HC as follows:

J r F ( x ) = z C : F ( z , y ) + 1 r y - z , z - x 0 , y C

for all z H. Then, the following hold:

  1. (1)

    J r F is single-valued;

  2. (2)

    J r F is firmly nonexpansive, that is, for any x,y H,

    J r F x - J r F y 2 J r F x - J r F y , x - y ;
  3. (3)

    F ( J r F ) =EP ( F ) ;

  4. (4)

    EP(F) is closed and convex.

Lemma 2.8. [32] Let {x n } and {l n } be bounded sequences in a Banach space X and let {β n } be a sequence in [0,1] with 0 < lim infn→∞β n ≤ lim supn→∞β n < 1. Suppose xn+1= (1 - β n )l n + β n x n for all integers n ≥ 0 and lim supn→∞(||ln+1- l n || - ||xn+1- x n ||) ≤ 0. Then, limn→∞||l n - x n || = 0.

Lemma 2.9. [33] Assume {a n } is a sequence of nonnegative real numbers such that

a n + 1 ( 1 - b n ) a n + c n , n 0 ,

where {b n } is a sequence in (0,1) and {c n } is a sequence in such that

  1. (1)

    n = 1 b n =,

  2. (2)

    lim sup n c n b n 0 or n = 1 c n <,

Then, limn→∞a n = 0.

3. Main results

Let C be a nonempty closed convex subset of a real Hilbert space H. Let T n n = 1 be a family of infinitely of nonexpansive mappings of C into itself and let μ n n = 1 be a sequence of nonnegative numbers in [0,1]. For any n ≥ 1, define a mapping W n : CC as follows:

U n , n + 1 = I , U n , n = μ n T n U n , n + 1 + ( 1 - μ n ) I , U n , n - 1 = μ n - 1 T n - 1 U n , n + ( 1 - μ n - 1 ) I , U n , k = μ k T k U n , k + 1 + ( 1 - μ k ) I , U n , k - 1 = μ k - 1 T k - 1 U n , k + ( 1 - μ k - 1 ) I , U n , 2 = μ 2 T 2 U n , 3 + ( 1 - μ 2 ) I , W n = U n , 1 = μ 1 T 1 U n , 2 + ( 1 - μ 1 ) I ,
(3.1)

such a mappings W n is nonexpansive from C to C and it is called the W-mapping generated by T1,T2,...,T n and μ1, μ2, ..., μ n (see [34]).

Lemma 3.1. [34, 35] Let C be a nonempty closed convex subset of a real Hilbert space H. Let T1,T2,..., be an infinite family of nonexpansive mappings of C into itself such that n = 1 F ( T n ) , let μ1, μ2, ... be real numbers such that 0 ≤ μ n b < 1 for every n ≥ 1. Then,

  1. (1)

    for every x C and k , the limit limn→∞U n,k x exists;

  2. (2)

    the mapping W of C into itself as follows:

    W x = lim n W n x = lim n U n , 1 x , x C
    (3.2)

is a nonexpansive mapping satisfying F ( W ) = n = 1 F ( T n ) , which it is called the W-mapping generated by T1, T2, ... and μ1, μ2, ...;

  1. (3)

    F ( W n ) = n = 1 F ( T n ) , for each n ≥ 1;

  2. (4)

    If E is any bounded subset of C, then lim n sup x E W x - W n x =0..

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H, let F k , k {1, 2, 3,..., M} be a bifunction from C × C to satisfying (A1)-(A4), let {T n } be an infinite family of nonexpansive mappings of C into itself and let B be ξ-inverse strongly monotone such that

Θ : = n = 1 F ( T n ) ( k = 1 M S E P ( F k ) ) V I ( C , B ) .

Let f be a contraction of H into itself with η (0,1) and let A be a strongly positive linear bounded operator on H with coefficient γ ̄ >0 and 0<γ< γ ̄ η . Let {x n }, {y n } and {u n } be sequences generated by

x 1 = x C c h o s e n a r b i t r a r y , y n = ( 1 - δ n ) x n + δ n P C ( x n - α n B x n ) , u n = J r M , n F M J r M - 1 , n F M - 1 J r M - 2 , n F M - 2 J r 2 , n F 2 J r 1 , n F 1 y n , x n + 1 = ε n γ f ( u n ) + β n x n + ( ( 1 - β n ) I - ε n A ) P C ( W n u n - λ n B W n u n ) , n 1 ,
(3.3)

where {W n } is the sequence generated by (3.1) and {ϵ n }, {β n } are two sequences in (0,1) and {r k,n }, k {1,2,3,..., M} are a real sequence in (0, ∞) satisfy the following conditions:

(C1) limn→∞ϵ n = 0 and n = 1 ε n =,

(C2) 0 < lim infn→∞β n ≤ lim supn→∞β n < 1,

(C3) {α n }, {λ n } [e, g] (0, 2ξ), limn→∞α n = 0 and limn→∞λ n = 0,

(C4) {δ n } [0, b], for some b (0,1) and limn→∞|δn+1- δ n | = 0,

(C5) lim infn→∞r k,n > 0 and limn→∞|rk,n+1- r k,n | = 0 for each k {1, 2, 3,..., M}.

Then, {x n } and {u n } converge strongly to a point z Θ, which is the unique solution of the variational inequality

( A - γ f ) z , x - z 0 , x Θ .
(3.4)

Equivalently, we have z = P Θ (I - A + γf)(z).

Proof. From the restrictions on control sequence, without loss of generality, that ϵ n ≤ (1 - β n )||A||-1 for all n ≥ 1. From Lemma 2.5, we know that if 0 ≤ ρ ≤ ||A||-1, then I - ρ A 1-ρ γ ̄ . We will assume that I - A 1- γ ̄ . Since A is a strongly positive bounded linear operator on H, we have

A = sup A x , x : x H , x = 1 .

Observe that

( ( 1 - β n ) I - ε n A ) x , x = 1 - β n - ε n A x , x 1 - β n - ε n A 0 ,

this show that (1 - β n )I - ϵ n A is positive. It follows that

( 1 - β n ) I - ε n A = sup ( ( 1 - β n ) I - ε n A ) x , x : x H , x = 1 = sup 1 - β n - ε n A x , x : x H , x = 1 1 - β n - ε n γ ̄ .

We divide the proof of Theorem 3.2 into seven steps.

Step 1. We show that the mapping PΘ(γf + (I - A)) has a unique fixed point.

Since f be a contraction of C into itself with coefficient η (0,1). Then, we have

P Θ ( γ f + ( I - A ) ) ( x ) - P Θ ( γ f + ( I - A ) ) ( y ) ( γ f + ( I - A ) ) ( x ) - ( γ f + ( I - A ) ) ( y ) γ f ( x ) - f ( y ) + I - A x - y γ η x - y + ( 1 - γ ̄ ) x - y = ( 1 - ( γ ̄ - η γ ) ) x - y , x , y C .

Since 0<1- ( γ ̄ - η γ ) <1, it follows that PΘ (γf + (I - A)) is a contraction of C into itself. Therefore, by the Banach Contraction Mapping Principle, has a unique fixed point, say z C, that is,

z = P Θ ( γ f + ( I - A ) ) ( z ) .

Step 2. We show that W n - λ n BW n is nonexpansive.

For all x, y C, let W n is the sequence defined by (3.1) and λ n (0, 2ξ), we obtain W n - λ n BW n is a nonexpansive. Indeed,

( W n - λ n B W n ) x - ( W n - λ n B W n ) y 2 = ( W n x - W n y ) - λ n ( B W n x - B W n y ) 2 = W n x - W n y 2 - 2 λ n W n x - W n y , B W n x - B W n y + λ n 2 B W n x - B W n y 2 x - y 2 - 2 λ n ξ B W n x - B W n y + λ n 2 B W n x - B W n y 2 = x - y 2 - λ n ( λ n - 2 ξ ) B W n x - B W n y 2 x - y 2 ,
(3.5)

which implies that W n - λ n BW n is a nonexpansive.

Step 3. We show that the sequence {x n } is bounded.

In fact, let x ̃ Θ, then

x ̃ = P C ( x ̃ - α n B x ̃ ) .

Setting v n = P C (x n - α n Bx n ) and I - α n B is a nonexpansive mapping (Lemma 2.1), we obtain

v n - x ̃ = P C ( x n - α n B x n ) - P C ( x ̃ - α n B x ̃ ) ( x n - α n B x n ) - ( x ̃ - α n B x ̃ ) = ( I - α n B ) x n - ( I - α n B ) x ̃ x n - x ̃
(3.6)

and

y n - x ̃ ( 1 - δ n ) x n - x ̃ + δ n v n - x ̃ ( 1 - δ n ) x n - x ̃ + δ n x n - x ̃ = x n - x ̃ .
(3.7)

Let n k = J r k , n F k J r k - 1 , n F k - 1 J r k - 2 , n F k - 2 J r 2 , n F 2 J r 1 , n F 1 for k {1, 2, 3,..., M} and n 0 =I for all n. Because J r k , n F k is nonexpansive for each k = 1, 2, 3,..., M, x ̃ = n k x ̃ and (3.7), we note that u n = n M y n . It follows that

u n - x ̃ = n M y n - n M x ̃ y n - x ̃ x n - x ̃ .
(3.8)

Let e n = P C (W n u n - λ n BW n u n ), we can prove that

e n - x ̃ = P C ( W n u n - λ n B W n u n ) - P C ( W n x ̃ - λ n B W n x ̃ ) ( W n u n - λ n B W n u n ) - ( W n x ̃ - λ n B W n x ̃ ) = ( W n - λ n B W n ) u n - ( W n - λ n B W n ) x ̃ u n - x ̃ x n - x ̃ ,
(3.9)

which yields that

x n + 1 - x ̃ = ε n ( γ f ( u n ) - A x ̃ ) + β n ( x n - x ̃ ) + ( ( 1 - β n ) I - ε n A ) ( e n - x ̃ ) ε n γ f ( u n ) - A x ̃ + β n x n - x ̃ + ( 1 - β n ) I - ε n A e n - x ̃ ε n γ f ( u n ) - f ( x ̃ ) + ε n γ f ( x ̃ ) - A x ̃ + β n x n - x ̃ + ( 1 - β n - ε n γ ̄ ) e n - x ̃ ε n γ η u n - x ̃ + ε n γ f ( x ̃ ) - A x ̃ + β n x n - x ̃ + ( 1 - β n - ε n γ ̄ ) x n - x ̃ ε n γ η x n - x ̃ + ε n γ f ( x ̃ ) - A x ̃ + β n x n - x ̃ + ( 1 - β n - ε n γ ̄ ) x n - x ̃ = ( 1 - ( γ ̄ - γ η ) ε n ) x n - x ̃ + ( γ ̄ - γ η ) ε n ( γ ̄ - γ η ) γ f ( x ̃ ) - A x ̃ .

By induction, we have

x n - x ̃ max x 1 - x ̃ , γ f ( x ̃ ) - A x ̃ γ ̄ - γ η , n .
(3.10)

This implies that {x n } is bounded, and hence so are {u n }, {e n }, {y n }, {BW n u n }, {Bx n }, {Ae n }, {v n - x n }, and {f(u n )}.

Step 4. We show that lim n x n + 1 - x n =0.

We claim that if ω n be a bounded sequence in C, then

lim n n k ω n - n + 1 k ω n = 0 ,
(3.11)

for every k {1, 2, 3,..., M}. From Step 2 of the proof of Theorem 3.1 in [10], we have that for k {1,2,3,...,M},

lim n J r k , n + 1 F k ω n - J r k , n F k ω n = 0 .
(3.12)

Note that for every k {1,2,3,...,M}, we obtain

n k = J r k , n F k J r k - 1 , n F k - 1 J r k - 2 , n F k - 2 J r 2 , n F 2 J r 1 , n F 1 = J r k , n F k n k - 1 .

Thus,

n k ω n - n + 1 k ω n = J r k , n F k n k - 1 ω n - J r k , n + 1 F k n + 1 k - 1 ω n J r k , n F k n k - 1 ω n - J r k , n + 1 F k n k - 1 ω n + J r k , n + 1 F k n k - 1 ω n - J r k , n + 1 F k n + 1 k - 1 ω n J r k , n F k n k - 1 ω n - J r k , n + 1 F k n k - 1 ω n + n k - 1 ω n - n + 1 k - 1 ω n J r k , n F k n k - 1 ω n - J r k , n + 1 F k n k - 1 ω n + J r k - 1 , n F k - 1 n k - 2 ω n - J r k - 1 , n + 1 F k - 1 n k - 2 ω n + n k - 2 ω n - n + 1 k - 2 ω n J r k , n F k n k - 1 ω n - J r k , n + 1 F k n k - 1 ω n + J r k - 1 , n F k - 1 n k - 2 ω n - J r k - 1 , n + 1 F k - 1 n k - 2 ω n + + J r 2 , n F 2 n 1 ω n - J r 2 , n + 1 F 2 n 1 ω n + J r 1 , n F 1 ω n - J r 1 , n + 1 F 1 ω n .
(3.13)

Now, apply (3.12) to conclude (3.11).

Since T n and U n,n are nonexpansive, we have

W n + 1 x n - W n x n = μ 1 T 1 U n + 1 , 2 x n - μ 1 T 1 U n , 2 x n μ 1 U n + 1 , 2 x n - U n , 2 x n = μ 1 μ 2 T 2 U n + 1 , 3 x n - μ 2 T 2 U n , 3 x n μ 1 μ 2 U n + 1 , 3 x n - U n , 3 x n μ 1 μ 2 μ n U n + 1 , n + 1 x n - U n , n + 1 x n M 1 i = 1 n μ i ,
(3.14)

where M1 ≥ 0 is an appropriate constant such that ||Un+1,n+1x n - Un,n+1x n || ≤ M1 for all n ≥ 0. From I - α n B is nonexpansive, we have

v n + 1 - v n = P C ( x n + 1 - α n + 1 B x n + 1 ) - P C ( x n - α n B x n ) ( x n + 1 - α n + 1 B x n + 1 ) - ( x n - α n B x n ) ( x n + 1 - α n + 1 B x n + 1 ) - ( x n - α n + 1 B x n ) + α n + 1 - α n B x n x n + 1 - x n + α n + 1 - α n B x n .
(3.15)

From (3.3) and (3.15), we have

y n + 1 - y n = ( 1 - δ n + 1 ) ( x n + 1 - x n ) + δ n + 1 ( v n + 1 - v n ) + ( δ n + 1 - δ n ) ( v n - x n ) ( 1 - δ n + 1 ) x n + 1 - x n + δ n + 1 v n + 1 - v n + δ n + 1 - δ n v n - x n ( 1 - δ n + 1 ) x n + 1 - x n + δ n + 1 x n + 1 - x n + α n + 1 - α n B x n + δ n - δ n + 1 x n - v n = x n + 1 - x n + δ n + 1 α n + 1 - α n B x n + δ n - δ n + 1 x n - v n .
(3.16)

Now, we compute ||un+1- u n || and ||en+1- e n ||. Consider the following computation:

u n + 1 - u n = n + 1 M y n + 1 - n M y n n + 1 M y n + 1 - n + 1 M y n + n + 1 M y n - n M y n y n + 1 - y n + n + 1 M y n - n M y n x n + 1 - x n + δ n + 1 α n + 1 - α n B x n + δ n - δ n + 1 x n - v n + n + 1 M y n - n M y n
(3.17)

and

e n + 1 - e n = p C ( W n + 1 u n + 1 - λ n + 1 B W n + 1 u n + 1 ) - P C ( W n u n - λ n B W n u n ) ( W n + 1 u n + 1 - λ n + 1 B W n + 1 u n + 1 ) - ( W n u n - λ n B W n u n ) = ( W n + 1 u n + 1 - λ n + 1 B W n + 1 u n + 1 ) - ( W n + 1 u n - λ n + 1 B W n + 1 u n ) + ( W n + 1 u n - λ n + 1 B W n + 1 u n ) - ( W n u n - λ n B W n u n ) ( W n + 1 u n + 1 - λ n + 1 B W n + 1 u n + 1 ) - ( W n + 1 u n - λ n + 1 B W n + 1 u n ) + W n + 1 u n - W n u n + λ n B W n u n - λ n + 1 B W n + 1 u n u n + 1 - u n + M 1 i = 1 n μ i + λ n B W n u n + λ n + 1 B W n + 1 u n x n + 1 - x n + δ n + 1 α n + 1 - α n B x n + δ n - δ n + 1 x n - v n + n + 1 M y n - n M y n + M 1 i = 1 n μ i + λ n B W n u n + λ n + 1 B W n + 1 u n .
(3.18)

Setting

l n = x n + 1 - β n x n 1 - β n = ε n γ f ( u n ) + ( ( 1 - β n ) I - ε n A ) e n 1 - β n ,

we have xn+1= (1 - β n )l n + β n x n , n ≥ 1. It follows that

l n + 1 - l n = ε n + 1 γ f ( u n + 1 ) + ( ( 1 - β n + 1 ) I - ε n + 1 A ) e n + 1 1 - β n + 1 - ε n γ f ( u n ) + ( ( 1 - β n ) I - ε n A ) e n 1 - β n = ε n + 1 1 - β n + 1 γ f ( u n + 1 ) - A e n + 1 + ε n 1 - β n A e n - γ f ( u n ) + ( e n + 1 - e n ) .
(3.19)

It follows from (3.18) and (3.19) that

l n + 1 - l n - x n + 1 - x n ε n + 1 1 - β n + 1 γ f ( u n + 1 ) - A e n + 1 + ε n 1 - β n A e n - γ f ( u n ) + δ n + 1 α n + 1 - α n B x n + δ n - δ n + 1 x n - v n + n + 1 M y n - n M y n + M 1 i = 1 n μ i + λ n B W n u n + λ n + 1 B W n + 1 u n ε n + 1 1 - β n + 1 γ f ( u n + 1 ) + A e n + 1 + ε n 1 - β n A e n + γ f ( u n ) + δ n + 1 α n + 1 - α n B x n + δ n - δ n + 1 x n - v n + n + 1 M y n - n M y n + M 1 i = 1 n μ i + λ n B W n u n + λ n + 1 B W n + 1 u n .
(3.20)

This together with conditions (C1)-(C4) and (3.11) imply that

lim  sup n ( l n + 1 - l n - x n + 1 - x n ) 0 .

By Lemma 2.8, we obtain

lim n l n - x n = 0 .

Consequently,

lim n x n + 1 - x n = lim n ( 1 - β n ) l n - x n = 0 .
(3.21)

Applying (3.11), (3.21) and conditions (C3), (C4) to (3.15) and (3.17), we obtain that

lim n u n + 1 - u n = lim n v n + 1 - v n = 0 .
(3.22)

Step 5. We show that lim n W n e n - e n =0.

For any x ̃ Θ and (3.5), we obtain

v n - x ̃ 2 = P C ( x n - α n B x n ) - P C ( x ̃ - α n B x ̃ ) 2 ( x n - α n B x n ) - ( x ̃ - α n B x ̃ ) 2 x n - x ̃ 2 + ( α n 2 - 2 α n ξ ) B x n - B x ̃ 2 .
(3.23)

By Lemma 2.2(iv) and (3.23), we have

y n - x ̃ 2 ( 1 - δ n ) x n - x ̃ 2 + δ n v n - x ̃ 2 ( 1 - δ n ) x n - x ̃ 2 + δ n { x n - x ̃ 2 + ( α n 2 - 2 α n ξ ) B x n - B x ̃ 2 } = x n - x ̃ 2 + ( α n 2 - 2 α n ξ ) δ n B x n - B x ̃ . 2
(3.24)

So, from (3.8) and (3.24), we derive

e n - x ̃ 2 u n - x ̃ 2 y n - x ̃ 2 x n - x ̃ 2 + ( α n 2 - 2 α n ξ ) δ n B x n - B x ̃ . 2
(3.25)

From (3.3), we have

x n + 1 x ˜ 2 = ( ( 1 β n ) I ε n A ) ( e n x ˜ ) + β n ( x n x ˜ ) + ε n ( γ f ( u n ) A x ˜ ) 2 = ( ( 1 β n ) I ε n A ) ( e n x ˜ ) + β n ( x n x ˜ ) 2 + ε n 2 γ f ( u n ) A x ˜ 2 + 2 β n ε n x n x ˜ , γ f ( u n ) A x ˜ + 2 ε n ( ( 1 β n ) I ε n A ) ( e n x ˜ ) , γ f ( u n ) A x ˜ ( ( 1 β n ε n γ ¯ ) e n x ˜ + β n x n x ˜ ) 2 + ε n L n ( 1 β n ε n γ ¯ ) 2 e n x ˜ 2 + β n 2 x n x ˜ 2 + 2 ( 1 β n ε n γ ¯ ) β n e n x ˜ x n x ˜ + ε n L n [ ( 1 ε n γ ¯ ) 2 2 ( 1 ε n γ ¯ ) β n + β n 2 ] e n x ˜ 2 + ( 1 β n ε n γ ¯ ) β n { e n x ˜ 2 + x n x ˜ 2 } + β n 2 x n x ˜ 2 + ε n L n = ( 1 ε n γ ¯ ) ( 1 β n ε n γ ¯ ) e n x ˜ 2 + ( 1 ε n γ ¯ ) β n x n x ˜ 2 + ε n L n ( 1 ε n γ ¯ ) ( 1 β n ε n γ ¯ ) { x n x ˜ 2 + ( α n 2 2 α n ξ ) δ n B x n B x ˜ 2 } + ( 1 ε n γ ¯ ) β n x n x ˜ 2 + ε n L n = ( 1 ε n γ ¯ ) 2 x n x ˜ 2 + ( 1 ε n γ ¯ ) ( 1 β n ε n γ ¯ ) ( α n 2 2 α n ξ ) δ n B x n B x ˜ 2 + ε n L n x n x ˜ 2 + ( 1 ε n γ ¯ ) ( 1 β n ε n γ ¯ ) ( α n 2 2 α n ξ ) δ n B x n B x ˜ 2 + ε n L n .
(3.26)

It follows that

( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) ( 2 g ξ - e 2 ) b B x n - B x ̃ 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) ( 2 α n ξ - α n 2 ) δ n B x n - B x ̃ 2 x n - x ̃ 2 - x n + 1 - x ̃ 2 + ε n L n x n - x n + 1 ( x n - x ̃ + x n + 1 - x ̃ ) + ε n L n ,

where

L n = ε n γ f ( u n ) - A x ̃ 2 + 2 β n x n - x ̃ , γ f ( u n ) - A x ̃ + 2 ( ( 1 - β n ) I - ε n A ) ( e n - x ̃ ) , γ f ( u n ) - A x ̃ .

By conditions (C1), (C2) and (3.21), we obtain

lim n B x n - B x ̃ = 0 .
(3.27)

Since P C is firmly nonexpansive mapping, we have

v n - x ̃ 2 = P C ( x n - α n B x n ) - P C ( x ̃ - α n B x ̃ ) 2 ( x n - α n B x n ) - ( x ̃ - α n B x ̃ ) , v n - x ̃ = 1 2 ( x n - α n B x n ) - ( x ̃ - α n B x ̃ ) 2 + v n - x ̃ 2 - ( x n - α n B x n ) - ( x ̃ - α n B x ̃ ) - ( v n - x ̃ ) 2 1 2 x n - x ̃ 2 + v n - x ̃ 2 - ( x n - v n ) - α n ( B x n - B x ̃ ) 2 1 2 x n - x ̃ 2 + v n - x ̃ 2 - x n - v n 2 - α n 2 B x n - B x ̃ 2 + 2 α n x n - v n B x n - B x ̃ .

Hence, we have

v n - x ̃ 2 x n - x ̃ 2 - x n - v n 2 + 2 α n x n - v n B x n - B x ̃

and so

y n - x ̃ 2 ( 1 - δ n ) x n - x ̃ 2 + δ n v n - x ̃ 2 ( 1 - δ n ) x n - x ̃ 2 + δ n { x n - x ̃ 2 - x n - v n 2 + 2 α n x n - v n B x n - B x ̃ } = x n - x ̃ 2 - δ n x n - v n 2 + 2 δ n α n x n - v n B x n - B x ̃ .
(3.28)

Using (3.26) and (3.28), we also have

x n + 1 - x ̃ 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) e n - x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) u n - x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) y n - x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) x n - x ̃ 2 - δ n x n - v n 2 + 2 δ n α n x n - v n B x n - B x ̃ + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n x n - x ̃ 2 - ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) δ n x n - v n 2 + 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) δ n α n x n - v n B x n - B x ̃ + ε n L n .

It follow that

( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) δ n x n - v n 2 x n - x n + 1 ( x n - x ̃ + x n + 1 - x ̃ ) + 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) δ n α n x n - v n B x n - B x ̃ + ε n L n .

From conditions (C1), C(4), (3.21) and (3.27), we obtain

lim n x n - u n = 0 .
(3.29)

Observe also that if e n = P C (W n u n - λ n BW n u n ), then

e n - x ̃ 2 = P C ( W n u n - λ n B W n u n ) - P C ( x ̃ - λ n B x ̃ ) 2 ( W n u n - λ n B W n u n ) - ( x ̃ - λ n B x ̃ ) 2 = ( W n u n - λ n B W n u n ) - ( W n x ̃ - λ n B W n x ̃ ) 2 u n - x ̃ 2 + ( λ n 2 - 2 λ n ξ ) B W n u n - B x ̃ 2 x n - x ̃ 2 + ( λ n 2 - 2 λ n ξ ) B W n u n - B x ̃ 2 .
(3.30)

Substituting (3.30) in (3.26), we have

x n + 1 - x ̃ 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) e n - x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) x n - x ̃ 2 + ( λ n 2 - 2 λ n ξ ) B W n u n - B x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n x n - x ̃ 2 + ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) ( λ n 2 - 2 λ n ξ ) B W n u n - B x ̃ 2 + ε n L n .

It follows that

( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) ( 2 g ξ - e 2 ) B W n u n - B x ̃ 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) ( 2 λ n ξ - λ n 2 ) B W n u n - B x ̃ 2 x n - x n + 1 ( x n - x ̃ + x n + 1 - x ̃ ) + ε n L n

Since ||xn+1- x n || → 0 (n → ∞) and conditions (C1) and (C2), we obtain

lim n B W n u n - B x ̃ = 0 .
(3.31)

Since P C is firmly nonexpansive (Lemma 2.2 (iii)), we have

e n - x ̃ 2 = P C ( W n u n - λ n B W n u n ) - P C ( x ̃ - λ n B x ̃ ) 2 ( W n u n - λ n B W n u n ) - ( x ̃ - λ n B x ̃ ) , e n - x ̃ = 1 2 ( W n u n - λ n B W n u n ) - ( x ̃ - λ n B x ̃ ) 2 + e n - x ̃ 2 - ( W n u n - λ n B W n u n ) - ( x ̃ - λ n B x ̃ ) - ( e n - x ̃ ) 2 1 2 u n - x ̃ 2 + e n - x ̃ 2 - ( W n u n - e n ) - λ n ( B W n u n - B x ̃ ) 2 1 2 x n - x ̃ 2 + e n - x ̃ 2 - W n u n - e n 2 - λ n 2 B W n u n - B x ̃ 2 + 2 λ n W n u n - e n B W n u n - B x ̃ .

Hence, we have

e n - x ̃ 2 x n - x ̃ 2 - W n u n - e n 2 + 2 λ n W n u n - e n B W n u n - B x ̃ .
(3.32)

Using (3.26) and (3.32), we also have

x n + 1 - x ̃ 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) e n - x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) x n - x ̃ 2 - W n u n - e n 2 + 2 λ n W n u n - e n B W n u n - B x ̃ + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n x n - x ̃ 2 - ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) W n u n - e n 2 + 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) λ n W n u n - e n B W n u n - B x ̃ + ε n L n .

It follow that

( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) W n u n - e n 2 x n - x n + 1 ( x n - x ̃ + x n + 1 - x ̃ ) + 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) λ n W n u n - e n B W n u n - B x ̃ + ε n L n .

From conditions (C1), (3.21), and (3.31), we obtain

lim n W n u n - e n = 0 .
(3.33)

For any x ̃ Θ, note that J r k , n F k is firmly nonexpansive (Lemma 2.7(2)) for k {1, 2, 3,..., M}, then we have

n k y n - x ̃ 2 = J r k , n F n n k - 1 y n - J r k , n F k x ̃ 2 J r k , n F n n k - 1 y n - J r k , n F k x ̃ , n k - 1 y n - x ̃ = n k y n - x ̃ , n k - 1 y n - x ̃ = 1 2 n k y n - x ̃ 2 + n k - 1 y n - x ̃ 2 - n k y n - n k - 1 y n 2 .

So, we obtain

n k y n - x ̃ 2 n k - 1 y n - x ̃ 2 - n k y n - n k - 1 y n 2 , k = 1 , 2 , 3 , , M

which implies that for each k {1, 2, 3,..., M - 1},

n k y n - x ̃ 2 n 0 y n - x ̃ 2 - n k y n - n k - 1 y n 2 - n k - 1 y n - n k - 2 y n 2 - - n 2 y n - n 1 y n 2 - n 1 y n - n 0 y n 2 y n - x ̃ 2 - n k y n - n k - 1 y n 2 x n - x ̃ 2 - n k y n - n k - 1 y n 2 .

Consequently, from (3.26) we derive that

x n + 1 - x ̃ 2 ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) e n - x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) u n - x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n = ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) n k y n - x ̃ 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) x n - x ̃ 2 - n k y n - n k - 1 y n 2 + ( 1 - ε n γ ̄ ) β n x n - x ̃ 2 + ε n L n x n - x ̃ 2 - ( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) n k y n - n k - 1 y n 2 + ε n L n .

Thus, we have

( 1 - ε n γ ̄ ) ( 1 - β n - ε n γ ̄ ) n k y n - n k - 1 y n 2 x n - x n + 1 ( x n - x ̃ + x n + 1 - x ̃ ) + ε n L n .

By lim inf n β n >0, ε n 0 as n → ∞ and (3.21), so we deduce that

lim n n k y n - n k - 1 y n = 0 , k = 1 , 2 , , M - 1 ,
(3.34)

that is,

u n ( k ) - u n ( k - 1 ) 0 as n .

Therefore, we have

y n - u n = n 0 y n - n k y n n 0 y n - n 1 y n + n 1 y n - n 2 y n + + n M - 1 y n - n M y n .

From (3.34), we have

lim n y n - u n = 0 .
(3.35)

Since xn+1= ϵ n γf(u n ) + β n x n + ((1 - β n )I - ϵ n A)e n , we have

x n - e n x n - x n + 1 + x n + 1 - e n = x n - x n + 1 + ε n γ f ( u n ) + β n x n + ( ( 1 - β n ) I - ε n A ) e n - e n = x n - x n + 1 + ε n ( γ f ( u n ) - A e n ) + β n ( x n - e n ) x n - x n + 1 + ε n ( γ f ( u n ) + A e n ) + β n x n - e n ,

that is,

x n - e n 1 1 - β n x n - x n + 1 + ε n 1 - β n ( γ f ( u n ) + A e n ) .

By conditions (C1), (C2), and (3.21) it follows that

lim n x n - e n = 0 .
(3.36)

On the other hand, from (3.3), we have

y n - x n = δ n v n - x n .

Since lim n x n - v n =0, we get

lim n y n - x n = 0 .
(3.37)

We observe that

W n e n - e n W n e n - W n u n + W n u n - e n e n - x n + x n - y n + y n - u n + W n u n - e n e n - x n + x n - y n + y n - u n + W n u n - e n .

Consequently, we obtain

lim n W n e n - e n = 0 .
(3.38)

Let W be the mapping defined by (3.2). Since {e n } is bounded, applying Lemma 3.1(4) and (3.38), we have

W e n - e n W e n - W n e n + W n e n - e n 0 as n .
(3.39)

Step 6. We show that q Θ, where Θ:= n = 1 F ( T n ) ( k = 1 M S E P ( F k ) ) VI ( C , B ) .

Since {x n } is bounded, we see that there exits a subsequence { x n i } of {x n } which converges weakly to q. It follows from (3.37) and (3.36) that y n i q and e n i q. From (3.35), we obtain that n i k y n i q for k = 1, 2,...,M.

First, we show that q k = 1 M SEP ( F k ) . Since u n = n k y n for k = 1, 2, 3,..., M, we also have

F k ( n k y n , y ) + 1 r n y - n k y n , n k y n - n k - 1 y n 0 , y C .

If follows from (A2) that,

1 r n y - n k y n , n k y n - n k - 1 y n - F k ( n k y n , y ) F k ( y , n k y n ) .

Replacing n by n i , we have

y - n i k y n i , n i k y n i - n i k - 1 y n i r n i F k ( y , n i k y n i ) .

Since n i k y n i - n i k - 1 y n i r n i 0 and n i k y n i q, it follows by (A4) that

F k ( y , q ) 0 y C ,

for each k = 1,2,3, ...,M.

For t with 0 < t ≤ 1 and y H, let y t = ty + (1 - t)q. Since y C and q C, we have y t C and hence F k (y t , q) ≤ 0. So, from (A1) and (A4) we have

0 = F k ( y t , y t ) t F k ( y t , y ) + ( 1 - t ) F k ( y t , q ) t F k ( y t , y )

and hence F k (y t ,y) ≥ 0. From (A3), we have F k (q,y) ≥ 0 for all y C and hence q SEP(F k ) for k = 1, 2, 3,..., M, that is, q k = 1 M SEP ( F k ) .

Next, we show that q n = 1 F ( T n ) . By Lemma 3.1(2), we have F ( W ) = n = 1 F ( T n ) . Assume q F(W). Since e n i q and qWq, it follows by the Opial's condition (Lemma 2.3) that

lim inf i e n i - q < lim inf i e n i - W q lim inf i { e n i - W e n i + W e n i - W q } lim inf i e n i - q

which derives a contradiction. Thus, we have qF ( W ) = n = 1 F ( T n ) .

Finally, now we prove that q VI(C, B).

We define the maximal monotone operator

Q q 1 = B q 1 + N C q 1 , q 1 C , , q 1 C .

For any given (q1, q2) G(Q), hence q2 - Bq1 N C q1. Since e n C we see from the definition of N C that

q 1 - e n , q 2 - B q 1 0 .

On the other hand, from e n = P C (W n u n - α n BW n u n ), we have

q 1 - e n , e n - ( W n u n - α n B W n u n ) 0 ,

that is

q 1 - e n , e n - W n u n α n + B W n u n 0 .

Therefore, we obtain

q 1 - e n i , q 2 q 1 - e n i , B q 1 q 1 - e n i , B q 1 - q 1 - e n i , e n i - W n u n i α n i + B W n u n i = q 1 - e n i , B q 1 - B W n u n i - e n i - W n u n i α n i = q 1 - e n i , B q 1 - B e n i + q 1 - e n i , B e n i - B W n u n i - q 1 - e n i , e n i - W n u n i α n i q 1 - e n i , B e n i - B W n u n i - q 1 - e n i , e n i - W n u n i α n i ,
(3.40)

Since e n i - W n u n i 0 as i → ∞ and B is Lipschitz continuous we obtain that

q 1 - q , q 2 0 .

Notice that Q is maximal monotone, we obtain that q Q-10 and hence q VI(C,B). This implies q Θ. Since z = PΘ(γf + (I - A))(z), we have

lim sup n x n - z , γ f ( z ) - A z = lim i x n i - z , γ f ( z ) - A z = q - z , γ f ( z ) - A z 0 .
(3.41)

On the other hand, we have

e n - z , γ f ( z ) - A z = e n - x n , γ f ( z ) - A z + x n - z , γ f ( z ) - A z e n - x n γ f ( z ) - A z + x n - z , γ f ( z ) - A z .

From (3.36) and (3.41), we obtain that

lim sup n e n - z , γ f ( z ) - A z 0 .
(3.42)

Step 7. Finally, we show that {x n } converges strongly to z = PΘ(I - A + γf)(z). Indeed, from (3.3), we have

x n + 1 z 2 = ( ( 1 β n ) I ε n A ) ( e n z ) + β n ( x n z ) + ε n ( γ f ( u n ) A z ) 2 = ( ( 1 β n ) I ε n A ) ( e n z ) + β n ( x n z ) 2 + ε n 2 γ f ( u n ) A z 2 + 2 β n ε n x n z , γ f ( u n ) A z + 2 ε n ( ( 1 β n ) I ε n A ) ( e n z ) , γ f ( u n ) A z ( ( 1 β n ε n γ ¯ ) e n z + β n x n z ) 2 + ε n 2 γ f ( u n ) A z 2 + 2 β n ε n γ x n z , f ( u n ) f ( z ) + 2 β n ε n x n z , γ f ( z ) A z + 2 ( 1 β n ) ε n γ e n z , f ( u n ) f ( z ) + 2 ε n e n z , γ f ( z ) A z 2 β n ε n e n z , γ f ( z ) A z 2 ε n 2 ( A ( e n z ) , γ f ( u n ) A z ( 1 β n ε n γ ¯ ) 2 e n z 2 + β n 2 x n z 2 + 2 ( 1 β n ε n γ ¯ ) β n e n z x n z + ε n 2 γ f ( u n ) A z 2 + 2 β n ε n γ x n z f ( u n ) f ( z ) + 2 ( 1 β n ) ε n γ e n z f ( u n ) f ( z ) + 2 β n ε n x n z γ f ( z ) A z 2 β n ε n e n z γ f ( z ) A z 2 ε n 2 A ( e n z ) γ f ( u n ) A z + 2 ε n e n z , γ f ( z ) A z [ ( 1 ε n γ ¯ ) 2 2 ( 1 ε n γ ¯ ) β n + β n 2 ] e n z 2 + β n 2 x n z 2 + ( 1 β n ε n γ ¯ ) β n { e n z 2 + x n z 2 } + ε n 2 γ f ( u n ) A z 2 + 2 β n ε n γ η x n z u n z + 2 ( 1 β n ) ε n γ η e n z u n z + 2 β n ε n x n z γ f ( z ) A z 2 β n ε n e n z γ f ( z ) A z 2 ε n 2 A ( e n z ) γ f ( u n ) A z + 2 ε n e n z , γ f ( z ) A z ( 1 ε n γ ¯ ) ( 1 β n ε n γ ¯ ) e n z 2 + ( 1 ε n γ ¯ ) β n x n z 2 + ε n 2 γ f ( u n ) A z 2 + 2 β n ε n γ η x n z 2 + 2 ( 1 β n ) ε n γ η x n z 2 + 2 β n ε n x n z γ f ( z ) A z 2 β n ε n e n z γ f ( z ) A z + 2 ε n 2 A ( e n z ) γ f ( u n ) A z + 2 ε n e n z , γ f ( z ) A z ( 1 ε n γ ¯ ) ( 1 β n ε n γ ¯ ) x n z 2 + ( 1 ε n γ ¯ ) β n x n z 2 + ε n 2 γ f ( u n ) A z 2 + 2 ε n γ η x n z 2 + 2 β n ε n x n z γ f ( z ) A z 2 β n ε n x n z γ f ( z ) A z + 2 ε n 2 A ( e n z ) γ f ( u n ) A z + 2 ε n e n z , γ f ( z ) A z = ( 1 2 ε n γ ¯ + ε n 2 γ ¯ 2 + 2 ε n γ η ) x n z 2 + ε n 2 γ f ( u n ) A z 2 + 2 ε n 2 A ( e n z ) γ f ( u n ) A z + 2 ε n e n z , γ f ( z ) A z = [ 1 2 ( γ ¯ γ η ) ε n ] x n z 2 + ε n { 2 e n z , γ f ( z ) A z + ε n K } .

where K is an appropriate constant such that

K max sup n 1 γ ̄ 2 x n - z 2 + γ f ( u n ) - A z 2 + 2 A ( e n - z ) γ f ( u n ) - A z ,

Set b n =2 ( γ ̄ - γ η ) ε n and c n = ϵ n {2〈e n - z,γf(z) - Az〉 + ϵ n K}. Then we have

x n + 1 - z 2 ( 1 - b n ) x n - z 2 + c n , n 0 .
(3.43)

From the conditions (C1) and (3.42), we see that

lim n b n = 0 , n = 0 b n = and lim sup n c n 0 .

Therefore, applying Lemma 2.8 to (3.43), we get that {x n } converges strongly to z Θ. This completes the proof.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H, let F k , k {1, 2, 3,..., M} be a bifunction from C × C to satisfying (A1)-(A4) and let B be ξ-inverse strongly monotone such that

Θ : = k = 1 M S E P ( F k ) V I ( C , B ) .

Let f be a contraction of H into itself with η (0,1). Let {x n }, {y n } and {u n } be sequences generated by

x 1 = x C c h o s e n a r b i t r a r y , y n = ( 1 - δ n ) x n + δ n P C ( x n - α n B x n ) , u n = J r M , n F M J r M - 1 , n F M - 1 J r M - 2 , n F M - 2 J r 2 , n F 2 J r 1 , n F 1 y n , x n + 1 = ε n f ( u n ) + β n x n + ( 1 - β n - ε n ) P C ( u n - λ n B u n ) , n 1 ,

where {ϵ n }, {β n } are two sequences in (0,1) and {r k,n }, k {1,2,3,...,M} are a real sequence in (0, ∞) satisfy the following conditions:

(C1) limn→∞ϵ n = 0 and n = 1 ε n =,

(C2) 0 < lim infn→∞β n ≤ lim supn→∞β n < 1,

(C3) {α n }, {λ n } [e, g] (0, 2ξ), limn→∞α n = 0 and limn→∞λ n = 0,

(C4) {δ n } [0, b], for some b (0,1) and limn→∞|δn+1- δ n | = 0,

(C5) lim infn→∞r k,n > 0 and limn→∞|rk,n+1- r k,n | = 0 for each k {1, 2, 3,..., M},

Then, {x n } and {u n } converge strongly to a point z Θ which is the unique solution of the variational inequality

( f ( z ) z , x z 0 , x Θ .

Equivalently, we have z = PΘf(z).

Proof. Put T n I for all n ≥ 1 and for all x C. Then W n = I, A = I and γ = 1. The conclusion follows from Theorem 3.2. This completes the proof.

If δ n = 0 and M = 1, in Theorem 3.2, then we can obtain the following result immediately.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H, let F k , k {1, 2, 3,..., M} be a bifunction from C × C to satisfying (A1)-(A4), let {T n } be an infinite family of nonexpansive mappings of C into itself and let B be ξ-inverse strongly monotone such that

Θ : = n = 1 F ( T n ) E P ( F ) V I ( C , B ) .

Let f be a contraction of H into itself with η (0,1) and let A be a strongly positive linear bounded operator on H with coefficient γ ̄ >0 and 0<γ< γ ̄ η . Let {x n }, {y n } and {u n } be sequences generated by

x 1 = x C c h o s e n a r b i t r a r y , F ( u n , y ) + 1 r n y - u n , u n - x n 0 , y C , x n + 1 = ε n γ f ( u n ) + β n x n + ( 1 - β n ) I - ε n A P C ( W n u n - λ n B W n u n ) , n 1 ,

where {W n } is the sequence generated by (3.1) and {ϵ n }, {β n } are two sequences in (0,1) and {r n } are a real sequence in (0,∞) satisfy the following conditions:

(C1) limn→∞ϵ n = 0 and n = 1 ε n =,

(C2) 0 < lim infn→∞β n ≤ lim supn→∞β n < 1,

(C3) {λ n } [e, g] (0, 2ξ) and limn→∞λ n = 0,

(C4) lim infn→∞r n > 0 and limn→∞|rn+1- r n | = 0.

Then, {x n } and {u n } converge strongly to a point z Θ which is the unique solution of the variational inequality

( A - γ f ) z , x - z 0 , x Θ .

Equivalently, we have z = P Θ (I - A + γf)(z).

References

  1. Blum E, Oettli W: From optimization and variational inequalities to equilibrium problems. Math Stud 1994, 63: 123–145.

    MATH  MathSciNet  Google Scholar 

  2. Agarwal RP, Cho YJ, Petrot N: Systems of general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces. Fixed Point Theory Appl 2011, 31. 2011

    Google Scholar 

  3. Combettes PL, Hirstoaga SA: Equilibrium programming in Hilbert spaces. J Nonlinear Convex Anal 2005, 6: 29–41.

    MathSciNet  Google Scholar 

  4. Cho YJ, Petrot N: On the system of nonlinear mixed implicit equilibrium problems in Hilbert spaces. J Inequal Appl 2010., 12: Article ID 437976, 2010

    Google Scholar 

  5. Cho YJ, Petrot N: An optimization problem related to generalized equilibrium and fixed point problems with applications. Fixed Point Theory 2010, 11: 237–250.

    MATH  MathSciNet  Google Scholar 

  6. Cho YJ, Petrot N: Regularization and iterative method for general variational inequality problem in Hilbert spaces. J Inequal Appl 2011, 21. 2011

    Google Scholar 

  7. Cho YJ, Argyros IK, Petrot N: Approximation methods for common solutions of generalized equilibrium, systems of nonlinear variational inequalities and fixed point problems. Comput Math Appl 2010, 60: 2292–2301. 10.1016/j.camwa.2010.08.021

    Article  MATH  MathSciNet  Google Scholar 

  8. Cho YJ, Kang JI, Qin X: Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems. Nonlinear Anal 2009, 71: 4203–4214. 10.1016/j.na.2009.02.106

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen JW, Cho YJ, Kim JK, Li J: Multiobjective optimization problems with modified objective functions and cone constraints and applications. J Global Optim 2011, 49: 137–147. 10.1007/s10898-010-9539-3

    Article  MATH  MathSciNet  Google Scholar 

  10. Colao V, Marino G, Xu HK: An iterative method for finding common solutions of equilibrium and fixed point problems. J Math Anal Appl 2008, 344: 340–352. 10.1016/j.jmaa.2008.02.041

    Article  MATH  MathSciNet  Google Scholar 

  11. Chantarangsi W, Jaiboon C, Kumam P: A viscosity hybrid steepest descent method for generalized mixed equilibrium problems and variational inequalities, for relaxed cocoercive mapping in Hilbert spaces. Abst Appl Anal 2010., 39: Article ID 390972, 2010

    Google Scholar 

  12. He H, Liu S, Cho YJ: An explicit method for systems of equilibrium problems and fixed points of infinite family of nonexpansive mappings. J Comput Appl Math 2011, 235: 4128–4139. 10.1016/j.cam.2011.03.003

    Article  MATH  MathSciNet  Google Scholar 

  13. Jaiboon C: The hybrid steepest descent method for addressing fixed point problems and system of equilibrium problems. Thai J Math 2010, 8: 275–292.

    MATH  MathSciNet  Google Scholar 

  14. Moudafi A, Thera M: Proximal and dynamical approaches to equilibrium problems. Lecture Note in Economics and Mathematical Systems 1999, 477: 187–201. Springer-Verlag, New York 10.1007/978-3-642-45780-7_12

    Article  MathSciNet  Google Scholar 

  15. Peng JW, Yao JC: A viscosity approximation scheme for system of equilibrium problems, nonexpansive mappings and monotone mappings. Nonlinear Anal 2009, 71: 6001–6010. 10.1016/j.na.2009.05.028

    Article  MATH  MathSciNet  Google Scholar 

  16. Qin X, Chang SS, Cho YJ: Iterative methods for generalized equilibrium problems and fixed point problems with applications. Nonlinear Anal Real World Appl 2010, 11: 2963–2972. 10.1016/j.nonrwa.2009.10.017

    Article  MATH  MathSciNet  Google Scholar 

  17. Takahashi S, Takahashi W: Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J Math Anal Appl 2007, 331: 506–515. 10.1016/j.jmaa.2006.08.036

    Article  MATH  MathSciNet  Google Scholar 

  18. Yao Y, Cho YJ, Liou Y: Iterative algorithms for variational inclusions, mixed equilibrium problems and fixed point problems approach to optimization problems. Central Eur J Math 2011, 9: 640–656. 10.2478/s11533-011-0021-3

    Article  MATH  MathSciNet  Google Scholar 

  19. Yao Y, Cho YJ, Liou Y: Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems. Eur J Oper 2011, 212: 242–250. 10.1016/j.ejor.2011.01.042

    Article  MATH  MathSciNet  Google Scholar 

  20. Chang SS, Joseph Lee HW, Chan CK: A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal 2009, 70: 3307–3319. 10.1016/j.na.2008.04.035

    Article  MATH  MathSciNet  Google Scholar 

  21. Su Y, Shang M, Qin X: An iterative method of solution for equilibrium and optimization problems. Nonlinear Anal 2008, 69: 2709–2719. 10.1016/j.na.2007.08.045

    Article  MATH  MathSciNet  Google Scholar 

  22. Yao Y, Liou YC, Yao YC: Convergence theorem for equilibrium problems and fixed point problems of infinite family of nonexpansive mappings. Fixed Point Theory Appl 2007., 12: Article ID 64363, 2007

    Google Scholar 

  23. Bauschke HH, Borwein JM: On projection algorithms for solving convex feasibility problems. SIAM Rev 1996, 38: 367–426. 10.1137/S0036144593251710

    Article  MATH  MathSciNet  Google Scholar 

  24. Combettes PL: The foundations of set theoretic estimation. Proceedings of the IEEE 1993, 81: 182–208.

    Article  Google Scholar 

  25. Goebeland K, Kirk WA: Topics in Metric Fixed Point Theory. Cambridge University Press, Cambridge, UK; 1990.

    Chapter  Google Scholar 

  26. Takahashi W: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama; 2000.

    Google Scholar 

  27. Marino G, Xu HK: A general iterative method for nonexpansive mapping in Hilbert spaces. J Math Anal Appl 2006, 318: 43–52. 10.1016/j.jmaa.2005.05.028

    Article  MATH  MathSciNet  Google Scholar 

  28. Takahashi W, Toyoda M: Weak convergence theorems for nonexpansive mappings and monotone mappings. J Optim Theory Appl 2003, 118: 417–428. 10.1023/A:1025407607560

    Article  MATH  MathSciNet  Google Scholar 

  29. Yamada I: The hybrid steepest descent method for the variational inequality problem of the intersection of fixed point sets of nonexpansive mappings. In Inherently Parallel Algorithm for Feasibility and Optimization. Edited by: Butnariu D, Censor Y, Reich S. Elsevier; 2001:473–504.

    Chapter  Google Scholar 

  30. Colao V, Marino G: Strong convergence for a minimization problem on point of equilibrium and common fixed points of family of nonexpansive mappings. Nonlinear Anal 2010, 73: 3513–3524. 10.1016/j.na.2010.07.011

    Article  MATH  MathSciNet  Google Scholar 

  31. Opial Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull Am Math Soc 1967, 73: 595–597.

    Article  MathSciNet  Google Scholar 

  32. Suzuki T: Strong convergence of krasnoselskii and mann's type sequences for one-parameter nonexpansive semigroups without bochner integrals. J Math Anal Appl 2005, 305: 227–239. 10.1016/j.jmaa.2004.11.017

    Article  MATH  MathSciNet  Google Scholar 

  33. Xu HK: Viscosity approximation methods for nonexpansive mappings. J Math Anal Appl 2004, 298: 279–291. 10.1016/j.jmaa.2004.04.059

    Article  MATH  MathSciNet  Google Scholar 

  34. Shimoji K, Takahashi W: Strong convergence to common fixed points of infinite nonexpansive mappings and applications. Taiwan J Math 2001, 5: 387–404.

    MATH  MathSciNet  Google Scholar 

  35. Zhang SS, Joseph Lee JH, Chan CK: Algorithms of common solutions for quasi-variational inclusion and fixed point problems. Appl Math Mech 2008, 29(5):571–581. 10.1007/s10483-008-0502-y

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Centre of Excellence in Mathematics, the Commission on Higher Education, Thailand. CJ was partially supported by Rajamangala University of Technology Rattanakosin Research and Development Institute, the Thailand Research Fund and the Commission on Higher Education under Grant No. MRG5480206. The authors thank the referees for their careful reading of the article and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaichana Jaiboon.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contribute equally and significantly in this research work. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Onjai-uea, N., Jaiboon, C., Kumam, P. et al. Convergence of iterative sequences for fixed points of an infinite family of nonexpansive mappings based on a hybrid steepest descent methods. J Inequal Appl 2012, 101 (2012). https://doi.org/10.1186/1029-242X-2012-101

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2012-101

Keywords