Skip to main content

Remarks on inequalities of Hardy-Sobolev Type

Abstract

We obtain the sharp constants of some Hardy-Sobolev-type inequalities proved by Balinsky et al. (Banach J Math Anal 2(2):94-106).

2000 Mathematics Subject Classification: Primary 26D10; 46E35.

1. Introduction

Hardy inequality in nreads, for all f C 0 ( n ) and n ≥ 3,

n | f | 2 d x ( n - 2 ) 2 4 n f 2 | x | 2 d x .
(1.1)

The Sobolev inequality states that, for all f C 0 ( n ) and n ≥ 3,

n | f | 2 d x S n n | f | 2 * d x 2 2 * ,
(1.2)

where 2 * = 2 n n - 2 and S n = π n ( n - 2 ) ( Γ ( n 2 ) Γ ( n ) ) 2 n is the best constant (cf. [1, 2]). A result of Stubbe [3] states that for 0δ< ( n - 2 ) 2 4 ,

n | f | 2 d x - δ n f 2 | x | 2 d x ( n - 2 ) 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | f | 2 * d x 2 2 *
(1.3)

and the constant in (1.3) is sharp. Recently, Balinsky et al. [4] prove analogous inequalities for the operator L:= x . One of the results states that, for 0 ≤ δ < n2/4 and f C 0 ( n ) ,

n | L f | 2 d x - δ n f 2 d x C n 2 4 - δ n - 1 n S n n | r F | 2 * d x 2 2 * ,
(1.4)

where F(r) is the integral mean of f over the unit sphere S n - 1 , i.e.,

F ( r ) = 1 | S n - 1 | S n - 1 f ( r ω ) d ω ,

and | S n - 1 |= S n - 1 dω= 2 π n 2 Γ ( n 2 ) . Here, we use the polar coordinates x = . The aim of this note is to look for the sharp constant of inequality (1.4). To this end, we have:

Theorem 1.1. Let f C 0 ( n ) and n ≥ 3. There holds, for0δ< n 2 4 ,

n | L f | 2 d x - δ n f 2 d x n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | r F ( r ) | 2 * d x 2 2 *
(1.5)

and the constant in (1.5) is sharp.

When δ = n2/4, we have the following Theorem, which generalize the results of [4], Corollary 4.6.

Theorem 1.2. If f is supported in the annulus A R := {x n: R-1 < |x| < R}, then

A R | L f | 2 d x - n 2 4 A R f 2 d x [ 2 ( n - 2 ) ln R ] - 2 ( n - 1 ) n S n A R | r F ( r ) | 2 * d x 2 2 * .

2. The proofs

We first recall the Bliss lemma [5]:

Lemma 2.1. For s ≥ 0, q > p > 1 and r = q/p - 1,

0 0 s g ( t ) d t q s r - q d s p q C p , q 0 | g ( t ) | p d t ,

where

C p , q = ( q - r - 1 ) - p q r Γ ( q r ) Γ ( 1 r ) Γ ( ( q - 1 ) r ) r p q

is the sharp constant. Equality is attained for functions of the form

g ( t ) = c 1 ( c 2 s r + 1 ) - r + 1 r , c 1 > 0 , c 2 > 0 .

Using the Bliss lemma, we can prove the Theorem 1.1 for the radial function f, i.e., f ( x ) = f ̃ ( | x | ) for some f ̃ C 0 ( [ 0 , ) ) .

Lemma 2.2. Letf ( | x | ) C 0 ( n ) and n ≥ 3. There holds, for0δ< n 2 4 ,

n | L f | 2 d x - δ n f 2 d x n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | r F ( r ) | 2 * d x 2 2 *
(2.1)

and the constant in (2.1) is sharp.

Proof. We note if f is radial, then F(r) = f(r) and Lf=r f ( r ) . Therefore, inequality (2.1) is equivalent to

0 | f ( r ) | 2 r n + 1 d r - δ 0 | f ( r ) | 2 r n - 1 d r n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n | S n - 1 | - 2 n 0 | f ( r ) | 2 * r 2 * + n - 1 d x 2 2 * .
(2.2)

Let 0 ≤ β < n/2 and set g(r) = rβf(r). Through integration by parts, we have that

0 | g ( r ) | 2 r n + 1 - 2 β d r = 0 | f ( r ) | 2 r n + 1 d r - β ( n - β ) 0 | f ( r ) | 2 r n - 1 d r .
(2.3)

Make the change of variables s = rn-2β,

0 | g ( r ) | 2 r n + 1 - 2 β d r = ( n - 2 β ) 0 s 2 g s 2 d s .
(2.4)

On the other hand, set h ( s ) = g s so that g=- s + h ( t ) d t, we have

0 s 2 g s 2 d s = 0 s 2 h 2 d s = 0 | w ( s ) | 2 d s ,

where w(s) = s-2h(s-1). By Bliss lemma,

0 | w ( s ) | 2 d s n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 0 s | w ( t ) | d t 2 * s 2 - 2 n n - 2 d s 2 2 * ,

i.e.,

0 s 2 g s 2 d s = 0 s 2 h 2 d s = 0 | w ( s ) | 2 d s n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 0 s | w ( t ) | d t 2 * s 2 - 2 n n - 2 d s 2 2 * = n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 s + | h ( t ) | d t 2 * s 2 n - 2 d s 2 2 * n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 g 2 * s 2 n - 2 d s 2 2 * .
(2.5)

Recall that s = rn-2βand g(r) = rβf(r),

0 g 2 * s 2 n - 2 d s = ( n - 2 β ) 0 ( r 1 - β g ) 2 * r n - 1 d r = ( n - 2 β ) 0 ( r f ) 2 * r n - 1 d r .
(2.6)

Therefore, by (2.3), (2.4), (2.5) and (2.6),

0 | f ( r ) | 2 r n + 1 d r - β ( n - β ) 0 | f ( r ) | 2 r n - 1 d r = ( n - 2 β ) 0 s 2 g s 2 d s ( n - 2 β ) 1 + 2 2 * n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 ( r f ) 2 * r n - 1 d r 2 2 * = ( n - 2 β ) 2 n - 2 n n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 ( r f ) 2 * r n - 1 d r 2 2 * .

Since | S n - 1 |= S n - 1 d ω= 2 π n 2 Γ ( n 2 ) and S n =πn ( n - 2 ) ( Γ ( n 2 ) Γ ( n ) ) 2 n , we have

n | L f | 2 d x - β ( n - β ) n f 2 d x = | S n - 1 | 0 | f ( r ) | 2 r n + 1 d r - β ( n - β ) | S n - 1 | 0 | f ( r ) | 2 r n - 1 d r | S n - 1 | ( n - 2 β ) 2 n - 2 n n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n 0 ( r f ) 2 * r n - 1 d r 2 2 * = | S n - 1 | 2 n ( n - 2 β ) 2 n - 2 n n n - 2 n - 2 n Γ ( n 2 ) Γ ( 1 + n 2 ) Γ ( n ) 2 n n | r f ( r ) | 2 * d x 2 2 * = n - 2 β n - 2 2 n - 2 n S n n | r f ( r ) | 2 * d x 2 2 * .

Let β= n - n 2 - 4 δ 2 when 0 ≤ δ < n2/4. Then, 0 ≤ β < n/2 and δ = β (n - β). Therefore,

n | L f | 2 d x - δ n f 2 d x n 2 - 4 δ ( n - 2 ) 2 n - 1 n S n n | r f ( r ) | 2 * d x 2 2 * .

Inequality (2.1) follows.

Now we can prove Theorem 1.1.

Proof of Theorem 1.1. Decomposing f into spherical harmonics, we get (see e.g. [6])

f = k = 0 f k : = k = 0 g k ( r ) ϕ k ( σ ) ,

where ϕ k (σ) are the orthonormal eigenfunctions of the Laplace-Beltrami operator with responding eigenvalues

c k = k ( N + k - 2 ) , k 0 .

The functions g k (r) belong to C 0 ( n ) , satisfying g k (r) = O(rk) and g k ( r ) =O ( r k - 1 ) as r → 0. By orthogonality,

F ( r ) = 1 | S n - 1 | S n - 1 f ( r ω ) d ω = g 0 ( r ) .

On the other hand,

L f ( x ) = k = 0 r ( g k ( r ) ϕ k ) r = k = 0 r g k ( r ) ϕ k ( σ ) .

Here, we use the radial derivative r = x | x | = L | x | . Therefore,

n | L f | 2 d x - δ n f 2 d x = k = 0 n r 2 | g k ( r ) | 2 d x - δ n g k 2 d x n r 2 | g 0 ( r ) | 2 d x - δ n g 0 2 d x = n r 2 | F ( r ) | 2 d x - δ n F ( r ) 2 d x

since

n | L u | 2 d x n 2 4 n u 2 d x

holds for all u C 0 ( n ) and Lu=r u ( r ) if u is radial. By Lemma 2.2,

n r 2 | F ( r ) | 2 d x - δ n F ( r ) 2 d x n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | r F ( r ) | 2 * d x 2 2 *

Therefore,

n | L f | 2 d x - δ n f 2 d x n r 2 | F ( r ) | 2 d x - δ n F ( r ) 2 d x n 2 4 - δ n - 1 n ( n - 2 ) 2 4 n - 1 n S n n | r F ( r ) | 2 * d x 2 2 * .

The proof of Theorem 1.1 is completed.

Proof of Theorem 1.2. We denote by B R Nthe unit ball centered at zero.

Step 1. Assume f is radial and f C 0 ( B R ) . Then,

B R | L f | 2 d x - n 2 4 B R f 2 d x = B R | r f ( r ) | 2 d x - n 2 4 B R f 2 ( r ) d x = B R | ( r f ( r ) ) | 2 d x - ( n - 2 ) 2 4 B R ( r f ) 2 | x | 2 d x .

Therefore, by Theorem B in [7],

B R | ( r f ( r ) ) | 2 d x - ( n - 2 ) 2 4 B R ( r f ) 2 | x | 2 d x ( n - 2 ) - 2 ( n - 1 ) n S n B R X 1 2 ( n - 1 ) n - 2 a , | x | R | r f | 2 n n - 2 d x n - 2 n ,

where

X 1 ( a , s ) : = ( a - ln s ) - 1 , a > 0 , 0 < s 1 .

Thus,

B R | L f | 2 d x - n 2 4 B R f 2 d x = B R | r f ( r ) | 2 d x - n 2 4 B R f 2 ( r ) d x ( n - 2 ) - 2 ( n - 1 ) n S n B R X 1 2 ( n - 1 ) n - 2 a , | x | R | r f | 2 n n - 2 d x n - 2 n .

Step 2. Assume f is not radial and f C 0 ( B R ) . We extend f as zero outside B R . So f C 0 ( n ) . Decomposing f into spherical harmonics, we have

f = k = 0 f k : = k = 0 g k ( r ) ϕ k ( σ ) ,

where ϕ k (σ) are the orthonormal eigenfunctions of the Laplace-Beltrami operator with responding eigenvalues

c k = k ( N + k - 2 ) , k 0 .

The functions f k (r) belong to C 0 ( B R ) . By the proof of Theorem 1.1 and Step 1,

n | L f | 2 d x - n 2 4 n f 2 d x = k = 0 n r 2 | g k ( r ) | 2 d x - n 2 4 n g k 2 d x n r 2 | g 0 ( r ) | 2 d x - n 2 4 n g 0 2 d x = n r 2 | F ( r ) | 2 d x - n 2 4 n F ( r ) 2 d x ( n - 2 ) - 2 ( n - 1 ) n S n B R X 1 2 ( n - 1 ) n - 2 a , | x | R | r F | 2 n n - 2 d x n - 2 n .

Step 3. By Step 1 and Step 2, the following inequality holds for f C 0 ( B R )

n | L f | 2 d x - n 2 4 n f 2 d x ( n - 2 ) - 2 ( n - 1 ) n S n B R X 1 2 ( n - 1 ) n - 2 a , | x | R | r F | 2 n n - 2 d x n - 2 n .

We note if R-1 < |x| < R, then

X 1 2 ( N - 1 ) N - 2 a , | x | D = 1 a - ln | x | R 2 ( N - 1 ) N - 2 1 a + 2 ln R 2 ( N - 1 ) N - 2 .

Therefore, If f is supported in the annulus A R := {x n: R-1 < |x| < R}, then

A R | L f | 2 d x - n 2 4 A R f 2 d x [ ( n - 2 ) ( 2 ln R + a ) ] - 2 ( n - 1 ) n S n A R | r F ( r ) | 2 * d x 2 2 * .

Letting a → 0, we have

A R | L f | 2 d x - n 2 4 A R f 2 d x [ 2 ( n - 2 ) ln R ] - 2 ( n - 1 ) n S n A R | r F ( r ) | 2 * d x 2 2 * .

The proof of Theorem 2 is completed.

References

  1. Aubin T: Probléme isopérimétric et espace de Sobolev. J Differ Geom 1976, 11: 573–598.

    MATH  MathSciNet  Google Scholar 

  2. Talenti G: Best constant in Sobolev inequality. Ann Matem Pura Appl 1976,110(4):353–372.

    Article  MATH  MathSciNet  Google Scholar 

  3. Stubbe J: Bounds on the number of bound states for potentials with critical decay at infinity. J Math Phys 1990,31(5):1177–1180. 10.1063/1.528750

    Article  MATH  MathSciNet  Google Scholar 

  4. Balinsky A, Evans WD, Hundertmark D, Lewis RT: On inequalities of Hardy-Sobolev type. Banach J Math Anal 2008,2(2):94–106.

    MATH  MathSciNet  Google Scholar 

  5. Bliss G: An integral inequality. J Lond Math Soc 1930, 5: 40–46. 10.1112/jlms/s1-5.1.40

    Article  MATH  MathSciNet  Google Scholar 

  6. Tertikas A, Zographopoulos NB: Best constants in the Hardy-Rellich inequalities and related improvements. Adv Math 2007, 209: 407–459. 10.1016/j.aim.2006.05.011

    Article  MATH  MathSciNet  Google Scholar 

  7. Adimurthi , Filippas S, Tertikas A: On the best constant of Hardy-Sobolev inequalities. Nonlinear Anal 2009, 70: 2826–2833. 10.1016/j.na.2008.12.019

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks the referee for his/her careful reading and very useful comments that improved the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Xiong Xiao.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

YX designed and performed all the steps of proof in this research and also wrote the paper. All authors read and approved the final manuscript.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Xiao, YX. Remarks on inequalities of Hardy-Sobolev Type. J Inequal Appl 2011, 132 (2011). https://doi.org/10.1186/1029-242X-2011-132

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1029-242X-2011-132

Keywords