- Research
- Open Access

# Demi-linear duality

- Ronglu Li
^{1}Email author, - Aihong Chen
^{1}and - Shuhui Zhong
^{2}

**2011**:128

https://doi.org/10.1186/1029-242X-2011-128

© Li et al; licensee Springer. 2011

**Received:**9 June 2011**Accepted:**2 December 2011**Published:**2 December 2011

## Abstract

As is well known, there exist non-locally convex spaces with trivial dual and therefore the usual duality theory is invalid for this kind of spaces. In this article, for a topological vector space *X*, we study the family of continuous demi-linear functionals on *X*, which is called the demi-linear dual space of *X*. To be more precise, the spaces with non-trivial demi-linear dual (for which the usual dual may be trivial) are discussed and then many results on the usual duality theory are extended for the demi-linear duality. Especially, a version of Alaoglu-Bourbaki theorem for the demi-linear dual is established.

## Keywords

- demi-linear
- duality
- equicontinuous
- Alaoglu-Bourbaki theorem

## 1 Introduction

Let $\mathbb{K}\in \left\{\mathbb{R},\u2102\right\}$ and *X* be a locally convex space over $\mathbb{K}$ with the dual *X'*. There is a beautiful duality theory for the pair (*X*, *X'*) (see [[1], Chapter 8]). However, it is possible that *X'* = {0} even for some Fréchet spaces such as *L*^{
p
} (0, 1) for 0 < *p* < 1. Then the usual duality theory would be useless and hence every reasonable extension of *X'* will be interesting.

Recently, ${\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$, the family of demi-linear mappings between topological vector spaces *X* and *Y* is firstly introduced in [2]. ${\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$ is a meaningful extension of the family of linear operators. The authors have established the equicontinuity theorem, the uniform boundedness principle and the Banach-Steinhaus closure theorem for the extension ${\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$. Especially, for demi-linear functionals on the spaces of test functions, Ronglu Li et al have established a theory which is a natural generalization of the usual theory of distributions in their unpublished paper "Li, R, Chung, J, Kim, D: Demi-distributions, submitted".

*X*,

*Y*be topological vector spaces over the scalar field $\mathbb{K}$ and $\mathcal{N}\left(X\right)$ the family of neighborhoods of 0 ∈

*X*. Let

**Definition 1.1** *[2, Definition 2.1] A mapping f: X → Y is said to be demi-linear if f*(0) = 0 *and there exists γ* ∈ *C*(0) *and* $U\in \mathcal{N}\left(X\right)$ *such that every x ∈ X, u ∈ U and* $t\in \left\{t\in \mathbb{K}:\mid t\mid \le 1\right\}$ *yield* $r,s\in \mathbb{K}$ *for which |r -* 1*|* ≤ *| γ* (t) *|, |s|* ≤ *| γ* (t)*| and f*(*x + tu*) = *rf*(*x*) + *sf*(*u*).

*the family of demi-linear mappings related to*

*γ*∈

*C*(0) and $U\in \mathcal{N}\left(X\right)$, and by ${\ud4a6}_{\gamma ,U}\left(X,Y\right)$ the subfamily of ${\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$ satisfying the following property: if

*x ∈ X, u ∈ U*and

*|t|*≤ 1, then

*f*(

*x + tu*) =

*rf*(

*x*) +

*sf*(

*u*) for some

*s*with

*|s|*≤

*| γ*(t)

*|*. Let

which is called the demi-linear dual space of *X*. Obviously, *X*' ⊂ *X*^{(γ, U)}.

In this article, first we discuss the spaces with non-trivial demi-linear dual, of which the usual dual may be trivial. Second we obtain a list of conclusions on the demi-linear dual pair (*X*, *X*^{(γ, U)}). Especially, the Alaoglu-Bourbaki theorem for the pair (*X*, *X*^{(γ, U)}) is established. We will see that many results in the usual duality theory of (*X*, *X*') can be extended to (*X*, *X*^{(γ, U)}).

Before we start, some existing conclusions about ${\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$ are given as follows. In general, ${\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$ is a large extension of *L*(*X*, *Y*). For instance, if ||·||: *X* → [0, +∞) is a norm, then $\parallel \cdot \parallel \phantom{\rule{2.77695pt}{0ex}}\in {\mathcal{L}}_{\gamma ,X}\left(X,\mathbb{R}\right)$ for every *γ* ∈ *C*(0). Moreover, we have the following

**Proposition 1.2** *([2, Theorem 2.1]) Let X be a non-trivial normed space, C* > 1*, δ* > 0 *and U* ={*u* ∈ *X* : ||*u*|| ≤ *δ*}, *γ*(*t*) = *Ct for* $t\in \mathbb{K}$. *If Y is non-trivial, i.e.,Y*≠{0}*, then the family of nonlinear mappings in* ${\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$ *is uncountable, and every non-zero linear operator T*: *X* → *Y produces uncountably many of nonlinear mappings in* ${\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$.

**Definition 1.3** *A family* Г ⊂ *Y*^{
X
} *is said to be equicontinuous at x* ∈ *X if for every* $W\in \mathcal{N}\left(Y\right)$, *there exists* $V\in \mathcal{N}\left(X\right)$ *such that f*(*x* + *V*) ⊂ *f*(*x*) + *W for all f* ∈ Г*, and* Г *is equicontinuous on X or, simply, equicontinuous if* Г *is equicontinuous at each x* ∈ *X*.

As usual, Г ⊂ *Y*^{
X
} is said to be pointwise bounded on *X* if {*f*(*x*): *f* ∈ Г} is bounded at each *x* ∈ *X*, and *f* : *X* → *Y* is said to be bounded if *f*(*B*) is bounded for every bounded *B* ⊂ *X*.

The following results are substantial improvements of the equicontinuity theorem and the uniform boundedness principle in linear analysis.

**Theorem 1.4** *([2, Theorem 3.1]) If X is of second category and* $\mathrm{\Gamma}\subset {\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$ *is a pointwise bounded family of continuous demi-linear mappings, then* Г *is equicontinuous on X*.

**Theorem 1.5** *([2, Theorem 3.3]) If x is of second category and* $\mathrm{\Gamma}\subset {\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$ *is a pointwise bounded family of continuous demi-linear mappings, then* Г *is uniformly bounded on each bounded subset of X, i.e.*,{*f*(*x*): *f* ∈ Г, *x* ∈ *B*} *is bounded for each bounded B* ⊂ *X*.

*If, in addition*, *X is metrizable, then the continuity of f* ∈ Г *can be replaced by boundedness of f* ∈ Г.

## 2 Spaces with non-trivial demi-linear dual

**Lemma 2.1**

*Let*$f\in {\mathcal{L}}_{\gamma ,U}\left(X,\mathbb{K}\right)$.

*For each x*∈

*X, u*∈

*U and*|

*t*| ≤ 1,

*we have*

*Proof*. Since $f\in {\mathcal{L}}_{\gamma ,U}\left(X,\mathbb{K}\right)$, for each

*x*∈

*X*,

*u*∈

*U*and |

*t*| ≤ 1, we have

*f*(

*x*+

*tu*) =

*rf*(

*x*) +

*sf*(

*u*) where |

*r*- 1| ≤ |

*γ*(

*t*)| and |

*s*| ≤ |

*γ*(

*t*)|. Then

which implies (2). Then (1) holds by letting *x* = 0 in (2).

**Theorem 2.2**

*Let X be a topological vector space and f*:

*X*→ [0, +∞)

*a function satisfying*

*Then, for every γ* ∈ *C*(0) *and*$U\in \mathcal{N}\left(X\right)$*, the following (I), (II), and (III) are equivalent:*

*(I)*
$f\in {\mathcal{L}}_{\gamma ,U}\left(X,\mathbb{R}\right)$
*;*

*(II) f*(*tu*) ≤ |*γ*(*t*)|*f*(*u*) *whenever u* ∈ *U and* |*t*| ≤ 1*;*

*(III)*$f\in {\ud4a6}_{\gamma ,U}\left(X,\mathbb{R}\right)$.

*Proof*. (I) ⇒ (II). By Lemma 2.1.

- (II)⇒ (III). Let
*x*∈*X*,*u*∈*U*and |*t*| ≤ 1. Then$f\left(x\right)-\mid \gamma \left(t\right)\mid f\left(u\right)\le f\left(x\right)-f\left(tu\right)\le f\left(x+tu\right)\le f\left(x\right)+f\left(tu\right)\le f\left(x\right)+\mid \gamma \left(t\right)\mid f\left(u\right).$

*φ*: [-|

*γ*(

*t*)|, |

*γ*(

*t*)|] → ℝ by

*φ*(

*α*) =

*f*(

*x*) +

*αf*(

*u*). Then

*φ*is continuous and

*s*∈[-|

*γ*(

*t*)|, |

*γ*(

*t*)|] such that

*f*(

*x*+

*tu*) =

*γ*(

*s*) =

*f*(

*x*) +

*sf*(

*u*).

- (III)
⇒ (I). ${\ud4a6}_{\gamma ,U}\left(X,\mathbb{R}\right)\subset {\mathcal{L}}_{\gamma ,U}\left(X,\mathbb{R}\right)$.

In the following Theorem 2.2, we want to know whether a paranorm on a topological vector space *X* is in ${\ud4a6}_{\gamma ,U}\left(X,\mathbb{R}\right)$ for some *γ* and *U*. However, the following example shows that this is invalid.

**Example 2.3**

*Let ω be the space of all sequences with the paranorm*||·||

*:*

*Then, for every γ*∈

*C*(0) and

*U*

_{ ε }= {

*u*= (

*u*

_{ j }): ||

*u*|| < ε}

*, we have*$\parallel \cdot \parallel \phantom{\rule{2.77695pt}{0ex}}\notin {\mathcal{L}}_{\gamma ,U}\left(\omega ,\mathbb{R}\right)$.

*Otherwise, there exists γ*∈

*C*(0)

*and ε*> 0

*such that*$\parallel \cdot \parallel \phantom{\rule{2.77695pt}{0ex}}\notin {\mathcal{L}}_{\gamma ,U}\left(\omega ,\mathbb{R}\right)$

*and hence*

*by Theorem 2.2. Pick N*∈ ℕ

*with*$\frac{1}{{2}^{N}}<\epsilon $.

*Let*${u}_{n}=\left(0,\cdots \phantom{\rule{0.3em}{0ex}},0,\stackrel{\left(N\right)}{n},0,\cdots \phantom{\rule{0.3em}{0ex}}\right)$,

*∀n*∈ ℕ.

*Then*$\parallel {u}_{n}\parallel =\frac{1}{{2}^{N}}\frac{n}{1+n}<\frac{1}{{2}^{N}}<\epsilon $

*implies u*

_{ n }∈

*U*

_{ ε }

*for each N*∈ ℕ.

*It follows from*

*that*$\gamma \left(\frac{1}{n}\right)\nrightarrow 0$*as n* → ∞, *which contradicts γ* ∈ *C*(0).

Note that the space *ω* in Example 2.3 has a Schauder basis. The following corollary shows that the set of nonlinear demi-linear continuous functionals on a Hausdorff topological vector space with a Schauder basis has an uncountable cardinality.

**Corollary 2.4** *Let X be a Hausdorff topological vector space with a Schauder basis. Then for every* γ ∈ *C*(0) *and* $U\in \mathcal{N}\left(X\right)$, *the demi-linear dual* ${X}^{\left(\gamma ,U\right)}=\left\{f\in {\mathcal{L}}_{\gamma ,U}\left(X,\mathbb{R}\right):f\phantom{\rule{2.77695pt}{0ex}}is\phantom{\rule{2.77695pt}{0ex}}continuous\right\}$ *is uncountable*.

*Proof*. Let {*b*_{
k
} } be a Schauder basis of *X*. There is a family *P* of non-zero paranorms on *X* such that the vector topology on *X* is just *σP*, i.e., *x*_{
α
} → *x* in *X* if and only if ||*x*_{
α
} - *x*|| → 0 for each ||·|| ∈ *P* ([[1], p.55]).

*P*. Then $\parallel {\sum}_{k=1}^{\infty}{s}_{k}{b}_{k}\parallel \ne 0$ for some ${\sum}_{k=1}^{\infty}{s}_{k}{b}_{k}\in X$ and hence $\parallel {s}_{{k}_{0}}{b}_{{k}_{0}}\parallel \ne 0$ for some

*k*

_{0}∈ ℕ. For non-zero $c\in \mathbb{K}$, define

*f*

_{ c }:

*X*→ [0, +∞) by

*f*

_{ c }is continuous and satisfies the condition (*) in Theorem 2.2. Let

*γ*∈

*C*(0), ${\sum}_{k=1}^{\infty}{r}_{k}{b}_{k}\in X$ and |

*t*| ≤ 1. Then

and hence ${f}_{c}\in {\ud4a6}_{\gamma ,U}\left(X,\mathbb{R}\right)\subset {\mathcal{L}}_{\gamma ,U}\left(X,\mathbb{R}\right)$ for all $U\in \mathcal{N}\left(X\right)$ by Theorem 2.2. Thus, $\left\{{f}_{c}:0\ne c\in \mathbb{K}\right\}\subset {X}^{\left(\gamma ,U\right)}$ for all *γ* ∈ *C*(0) and $U\in \mathcal{N}\left(X\right)$.

**Example 2.5**

*As in Example 2.3, the space*(

*ω*, ||·||)

*is a Hausdorff topological vector space with the Schauder base*$\left\{{e}_{n}=\left(0,\cdots \phantom{\rule{0.3em}{0ex}},0,\stackrel{\left(n\right)}{1},0,\cdots \phantom{\rule{0.3em}{0ex}}\right):n\in \mathbb{N}\right\}$

*. Define f*

_{ c,n }:

*ω*→ ℝ

*with f*

_{ c,n }(

*u*) = |

*cu*

_{ n }|

*where u*= (

*u*

_{ j }) ∈ ω

*. Then we have*

*for every γ* ∈ *C*(0) and $U\in \mathcal{N}\left(\omega \right)$*by Corollary 2.4*.

Recall that a *p*-seminorm ||·|| (0 < *p* ≤ 1) on a vector space *E* is characterized by ||*x*|| ≥ 0, ||*tx*|| = |*t*| ^{
p
} ||*x*|| and ||*x* + *y*|| ≤ ||*x*|| + ||*y*|| for all $t\in \mathbb{K}$ and *x*, *y* ∈ *E*. If, in addition, ||*x*|| = 0 implies *x* = 0, then, ||·|| is called a *p*-norm on *E*.

**Definition 2.6**([[3],

*p. 11*][[4],

*Sec. 2]) A topological vector space X is semiconvex if and only if there is a family*{

*p*

_{ α }}

*of (continuous) k*

_{ α }

*-seminorms (*0 <

*k*

_{ α }≤ 1

*) such that the sets*{

*x*∈

*X*:

*p*

_{ α }(

*x*) < 1}

*form a neighborhood basis at 0, that is*,

*is a base of*$\mathcal{N}\left(X\right)$, *where P is the family of all continuous p-seminorms with* 0 < *p* ≤ 1.

A topological vector space *X* is locally bounded if and only if its topology is given by a *p*-norm (0 < *p* ≤ 1) ([[5], §15, Sec. 10]).

Clearly, locally bounded spaces and locally convex spaces are both semiconvex.

**Corollary 2.7**

*Let X be a semiconvex Hausdorff topological vector space and p*

_{0}

*a continuous k*

_{0}

*-seminorm (*0 <

*k*

_{0}≤ 1

*) on X. Then for*${U}_{0}=\left\{x\in X:{p}_{0}\left(x\right)\le 1\right\}\in \mathcal{N}\left(X\right)$ and $\gamma \left(\cdot \right)=e\mid \cdot {\mid}^{{\mathbb{K}}_{0}}\in {\mathbb{K}}^{\mathbb{K}}$

*, the demi-linear dual*

*is uncountable. Especially*, $\left\{{p}_{0}\left(\cdot \right),\phantom{\rule{2.77695pt}{0ex}}\mathsf{\text{sin}}\left({p}_{0}\left(\cdot \right)\right),{e}^{{p}_{0}\left(\cdot \right)}-\mathsf{\text{1}}\right\}\subset {X}^{\left(\gamma ,{U}_{0}\right)}$.

*Proof*. Let

*P*be the family of all continuous

*k*

_{ α }-seminorms with 0 <

*k*

_{ α }≤ 1. Obviously, the functionals in

*P*satisfy the condition (*) in Theorem 2.2. Moreover, for each

*p*

_{ α }∈

*P*with

*k*

_{ α }≥

*k*

_{0}, we have

and hence $\left\{c{p}_{\alpha}:c\in \mathbb{K},{k}_{\alpha}\ge {k}_{0}\right\}\subset {X}^{\left(\gamma ,{U}_{0}\right)}$ by Theorem 2.2.

*f*:

*X*→ ℝ by

*f*(

*x*) = sin(

*p*

_{0}(

*x*)), ∀

*x*∈

*X*. For each

*x*∈

*X*,

*u*∈

*U*

_{0}and |

*t*| ≤ 1, there exists $s\in \left[-\mid t{\mid}^{{k}_{0}},\mid t{\mid}^{{k}_{0}}\right]$ and

*θ*∈ [0,1] such that

which implies that $f\left(\cdot \right)=sin\left({p}_{0}\left(\cdot \right)\right)\in {X}^{\left(\gamma ,{U}_{0}\right)}$.

*g*:

*X*→ ℝ by $g\left(x\right)={e}^{{p}_{0}\left(x\right)}-1$, ∀

*x*∈

*X*. For each

*x*∈

*X*,

*u*∈

*U*

_{0}and |

*t*| ≤ 1, there exists $s\in \left[-\mid t{\mid}^{{k}_{0}},\mid t{\mid}^{{k}_{0}}\right]$ such that

*θ*,

*η*∈ [0,1] for which

Thus, $g\left(\cdot \right)={e}^{{p}_{0}\left(\cdot \right)}-1\in {X}^{\left(\gamma ,{U}_{0}\right)}$.

**Example 2.8**

*For*0 <

*p*< 1

*, let L*

^{ p }(0,1)

*be the space of equivalence classes of measurable functions on*[0,1]

*, with*

*Then* (*L*^{
p
} (0,1), ||·||)' = {0} ([[1], *p.25]). However*, *L*^{
p
} (0,1) *is locally bounded and hence semiconvex. By Corollary 2.7, if U*_{0} = {*f* : ||*f*|| ≤ 1} *and γ*(·) = *e*|·| ^{
p
} ∈ *C*(0)*, then the demi-linear dual*${\left({L}^{p}\left(0,1\right),\parallel \cdot \parallel \right)}^{\left(\gamma ,{U}_{0}\right)}$*contains various non-zero functionals*.

A conjecture is that each topological vector space has a nontrivial demi-linear dual space. However, this is invalid, even for separable Fréchet space.

**Example 2.9**

*Let*$\mathcal{M}\left(0,1\right)$

*be the space of equivalence classes of measurable functions on*[0,1]

*, with*

*Then*$\mathcal{M}\left(0,1\right)$

*is a separable Fréchet space with trivial dual. In fact, the demi-linear dual space of*$\mathcal{M}\left(0,1\right)$

*is also trivial, that is*,

*Let*$u\in {\left(\mathcal{M}\left(0,1\right),\parallel \cdot \parallel \right)}^{\left(\gamma ,U\right)}$.

*Let N*∈ ℕ

*be such that*$\parallel f\parallel \phantom{\rule{2.77695pt}{0ex}}\le \frac{1}{N}$

*implies f*∈

*U and*|

*u*(

*f*)| < 1.

*Given*$f\in \mathcal{M}\left(0,1\right)$,

*write*$f={\sum}_{k=1}^{N}{f}_{k}$

*where f*

_{ k }= 0

*off*$\left[\frac{k-1}{N},\frac{k}{N}\right]$.

*Then*$\u2225{f}_{k}\u2225\le \frac{1}{N}$

*so*

*where*|

*r*

_{ i }- 1| ≤ |

*γ*(1)|

*and*|

*s*

_{ i }| ≤ |

*γ*(1)|

*for*2 ≤

*I*≤

*N*.

*Then*

*So*${sup}_{f\in \mathcal{M}\left(0,1\right)}\mid u\left(f\right)\mid \phantom{\rule{2.77695pt}{0ex}}<+\infty $.

*Since*$\parallel n{f}_{k}\parallel \phantom{\rule{2.77695pt}{0ex}}\le \frac{1}{N}$

*for each n*∈ ℕ

*and*1 ≤

*k*≤

*N*,

*we have*{

*nf*

_{ k }:

*n*∈ ℕ,

*k*∈ ℕ} ⊂

*U*.

*Then by Lemma 2.1*,

*holds for all n* ∈ ℕ *and* 1 ≤ *k* ≤ *N. Letting n* → ∞*, (7) implies u*(*f*_{
k
} ) = 0 *for* 1 ≤ *k* ≤ *N. Hence*, |*u*(*f*)| = 0 *by (4). Thus, u* = 0.

## 3 Conclusions on the demi-linear dual pair (*X*, *X* ^{(γ,U)})

*X*and

*Y*are topological vector spaces over $\mathbb{K}$, $\mathcal{N}\left(X\right)$ is the family of neighborhoods of 0 ∈

*X*, and

*X*

^{(γ,U)}is the family of continuous demi-linear functionals in ${\mathcal{L}}_{\gamma ,U}\left(X,\mathbb{K}\right)$. Recall that for usual dual pair (

*X*,

*X*') and

*A*⊂

*X*, the polar of

*A*, written as

*A*

^{°}, is given by

*X*,

*X*

^{(γ,U)}) and

*A*⊂

*X*, we denote the polar of

*A*by

*A*

^{•}, which is given by

*S*⊂

*X*

^{(γ,U)},

**Lemma 3.1**.

*Let*$f\in {\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$.

*For every u*∈

*U and n*∈ ℕ,

*Proof*. It is similar to the proof of (3)-(6) in Example 2.9.

**Lemma 3.2**. *Let S* ⊂ *X*^{(γ,U)}*. If S is equicontinuous at* 0 ∈ *X, then,* ${S}^{\bullet}\in \mathcal{N}\left(X\right)$ *and* sup _{f∈S,x∈B}|*f*(*x*)| < +∞ *for every bounded B* ⊂ *X*.

*Proof*. Assume that *S* is equicontinuous at 0 ∈ *X*. There is $U\in \mathcal{N}\left(X\right)$ such that |*f*(*x*)| < 1 for all *f* ∈ *S* and *x* ∈ *V*. Then *V* ⊂ *S*^{•} and hence ${S}^{\bullet}\in \mathcal{N}\left(X\right)$.

*B*⊂

*X*be bounded. Since ${S}^{\bullet}\cap U\in \mathcal{N}\left(X\right)$, we have $\frac{1}{m}B\subset {S}^{\bullet}\cap U$ for some

*m*∈ ℕ. Then for each

*f*∈

*S*and

*x*∈

*B*,

by Lemma 3.1. Hence, sup _{f∈S,x∈B}|*f*(*x*)| ≤ 2(1 + |*γ*(1)|)^{m-1}- 1 < +∞.

**Lemma 3.3**. *Let S* ⊂ *X*^{(γ,U)}*. Then S is equicontinuous on X if and only if S is equicontinuous at* 0 ∈ *X*.

*Proof*. Assume that *S* is equicontinuous at 0 ∈ *X*. There is $W\in \mathcal{N}\left(X\right)$ such that |*f*(*ω*)| < 1 for all *f* ∈ *S* and ω ∈ *W*.

*x*∈

*X*and

*ε*> 0. By Lemma 3.2, sup

_{f ∈S}|

*f*(

*x*)| =

*M*< +∞. Observing lim

_{ t →0 }

*γ*(

*t*) = 0, pick

*δ*∈ (0, 1) such that $\mid \gamma \left(\frac{\delta}{2}\right)\mid <\frac{\epsilon}{2\left(M+1\right)}$. By Lemma 2.1, for

*f*∈

*S*and $u=\frac{\delta}{2}{u}_{0}\in \frac{\delta}{2}\left(W\cap U\right)$, we have

Thus, $f\left[x+\frac{\delta}{2}\left(W+U\right)\right]\subset f\left(x\right)+\left\{z\in \mathbb{K}:\phantom{\rule{2.77695pt}{0ex}}\mid z\mid \phantom{\rule{2.77695pt}{0ex}}<\epsilon \right\}$ for all *f* ∈ *S*, i.e., *S* is equicontinuous at *x*.

**Theorem 3.4**. *Let S* ⊂ *X*^{(γ,U)}*. Then S is equicontinuous on X if and only if* ${S}^{\bullet}\in \mathcal{N}\left(X\right)$.

*Proof*. If *S* is equicontinuous, then ${S}^{\bullet}\in \mathcal{N}\left(X\right)$ by Lemma 3.2.

Assume that ${S}^{\bullet}\in \mathcal{N}\left(X\right)$ and *ε* > 0. Since lim_{
t
}_{→0}*γ*(*t*) = *γ*(0) = 0, there is *δ* > 0 such that |*γ*(*t*)| < *ε* whenever |*t*| < *δ*. For *f* ∈ *S* and $x=\frac{\delta}{2}{x}_{0}\in \frac{\delta}{2}\left({S}^{\bullet}\cap U\right)$, we have |*f*(*x*_{0})| ≤ 1 and $\mid f\left(x\right)\mid \phantom{\rule{2.77695pt}{0ex}}=\mid f\left(\frac{\delta}{2}{x}_{0}\right)\mid \le \mid \gamma \left(\frac{\delta}{2}\right)\mid \mid f\left({x}_{0}\right)\mid \phantom{\rule{2.77695pt}{0ex}}<\epsilon $ by Lemma 2.1. Thus, $f\left[\frac{\delta}{2}\left({S}^{\bullet}\cap U\right)\right]\subset \left\{z\in \mathbb{K}:\phantom{\rule{2.77695pt}{0ex}}\mid z\mid \phantom{\rule{2.77695pt}{0ex}}<\epsilon \right\}$ for all *f* ∈ *S*, i.e., *S* is equicontinuous at 0 ∈ *X*. By Lemma 3.3, *S* is equicontinuous on *X*.

The following simple fact should be helpful for further discussions.

**Example 3.5**. *Let* (*L*^{
p
} (0, 1), ||·||) *be as in Example 2.8, U* = {*f* : ||*f* || ≤ 1} *and γ*(*t*) = *e* |*t*| ^{
p
} *for* $t\in \mathbb{K}$ *. Then* (*L*^{
p
} (0, 1), ||·||)^{(γ,U)}*contains non-zero continuous functionals such as* ||·||, sin ||·||*, e*^{||·||} - 1*, etc. Since* (*αf*)(·) = *αf*(·) *for* $\alpha \in \mathbb{K}$ *and f*∈ (*L*^{
p
} (0, 1), ||·||)^{(γ,U)}*, it follows from e*^{||·||} - 1 ∈ (*L*^{
p
} (0, 1), ||·||)^{(γ,U)}*that* $\frac{1}{e}\left({e}^{\parallel \cdot \parallel}-1\right)\in {\left({L}^{p}\left(0,1\right),\parallel \cdot \parallel \right)}^{\left(\gamma ,U\right)}$. *If u* ∈ *U, then* ||*u*|| ≤ 1, |sin ||*u*||| ≤ ||*u*|| ≤ 1 *and* $\mid \frac{1}{e}\left({e}^{\parallel u\parallel}-1\right)\mid \le \frac{e-1}{e}<1$. *Thus, if V is a neighborhood of* 0 ∈ *L*^{
p
} (0, 1) *such that V* ⊂ *U, then V*^{•}*contains non-zero functionals such as* ||·||, sin ||·||*,* $\frac{1}{e}\left({e}^{\parallel \cdot \parallel}-1\right)$*, etc*.

**Corollary 3.6**. *For every* $U,V\in \mathcal{N}\left(X\right)$ *and γ*∈ *C*(0)*, V*^{•} = {*f* ∈ *X*^{(γ,U)}: |*f*(*x*)| ≤ 1, ∀*x* ∈ *V*} *is equicontinuous on X*.

*Proof*. Let *x* ∈ *V*. Then |*f*(*x*)| ≤ 1, ∀*f* ∈ *V*^{•}, i.e., *x* ∈ (*V*^{•})^{•}. Thus, *V* ⊂ (*V*^{•})^{•} and so ${\left({V}^{\bullet}\right)}^{\bullet}\in \mathcal{N}\left(X\right)$. By Theorem 3.4, *V*^{•} is equicontinuous on *X*.

**Corollary 3.7**. *If X is of second category and S* ⊂ *X*^{(γ,U)}*is pointwise bounded on X, then* ${S}^{\bullet}\in \mathcal{N}\left(X\right)$.

*Proof*. By Theorem 1.4, *S* is equicontinuous on *X*. Then ${S}^{\bullet}\in \mathcal{N}\left(X\right)$ by Theorem 3.4.

**Corollary 3.8**.

*Let X be a semiconvex space and S*⊂

*X*

^{(γ,U)}

*. Then S is equicontinuous on x if and only if there exist finitely many continuous k*

_{ i }

*-seminorm p*

_{ i }

*'s (*0 <

*k*

_{ i }≤ 1, 1 ≤

*i*≤

*n*< +∞

*) on x such that*

*In particular, for a p-seminormed space*(

*X*, ||·||)

*(*||·||

*is a p-seminorm for some p*∈ (0, 1]

*, especially, a norm when p*= 1

*) and S*⊂

*X*

^{(γ,U)}

*, S is equicontinuous on x if and only if*

*Proof*. Assume that

*S*is equicontinuous. Then ${S}^{\bullet}\in \mathcal{N}\left(X\right)$ by Theorem 3.4. According to Definition 2.6, there exist finitely many continuous

*k*

_{ i }-seminorm

*p*

_{ i }'s (0 <

*k*

_{ i }≤ 1, 1 ≤

*i*≤

*n*< +∞) and

*ε*> 0 such that

*f*∈

*S*and

*p*

_{ i }(

*x*) ≤ 1, 1 ≤

*i*≤

*n*. Pick

*n*

_{0}∈ ℕ for which ${\left(\frac{1}{{n}_{0}}\right)}^{{k}_{0}}<\epsilon $, where

*k*

_{0}= min

_{1≤i≤n}

*k*

_{ i }. Then

Thus, ${sup}_{f\in S}{sup}_{{p}_{i}\left(x\right)\le 1,1\le i\le n}\mid f\left(x\right)\mid \phantom{\rule{2.77695pt}{0ex}}\le {2\left(1\phantom{\rule{2.77695pt}{0ex}}+\mid \gamma \left(1\right)\mid \right)}^{{n}_{0}-1}-1<+\infty $.

*p*

_{ i }is a continuous

*k*

_{ i }-seminorm with 0 <

*k*

_{ i }≤ 1 for 1 ≤

*i*≤

*n*< +∞, and (8) holds. Let $A=\left\{\frac{1}{M+1}f:f\in S\right\}$. Then

*A*⊂

*X*

^{(γ,U)}and

i.e., {*x* ∈ *X* : *p*_{
i
} (*x*) ≤ 1, 1 ≤ *i* ≤ *n*} ⊂ *A*^{•} and so ${A}^{\bullet}\in \mathcal{N}\left(X\right)$. By Theorem 3.4, *A*^{•} is equicontinuous on *X* and *S* = (1 + *M*)*A* is also equicontinuous on *X*.

**Lemma 3.9**. *Let* $C\left(X,\mathbb{K}\right)=\left\{f\in {\mathbb{K}}^{X}:f\phantom{\rule{2.77695pt}{0ex}}is\phantom{\rule{2.77695pt}{0ex}}continuous\right\}$. *For* $S\subset C\left(X,\mathbb{K}\right)$, *the following (I) and (II) are equivalent*.

*(I) S is equicontinuous on X*.

*(II) If*(*x*_{
α
} )_{
α
}_{∈}*I is a net in x such that x*_{
α
} → *x* ∈ *X, then* lim _{
α
} *f*(*x*_{
α
} ) = *f*(*x*) *uniformly for f* ∈ *S*.

*Proof*. (I)⇒(II). Let

*ε*> 0 and

*x*

_{α}→

*x*in

*X*. Since

*S*is equicontinuous on

*X*, there is $W\in \mathcal{N}\left(X\right)$ such that

*x*

_{ α }→

*x*, there is an index

*α*

_{0}such that

*x*

_{ α }-

*x*∈

*W*for all

*α*≥

*α*

_{0}. Then

Thus, lim _{
α
} *f*(*x*_{
α
} ) = *f*(*x*) uniformly for *f* ∈ *S*.

(II)⇒(I). Suppose that (II) holds but there exists *x* ∈ *X* such that *S* is not equicontinuous at *x*.

*ε*> 0 such that for every $V\in \mathcal{N}\left(X\right)$, we can choose

*f*

_{ v }∈

*S*and

*z*

_{ v }∈

*V*for which

*X*. For every $W\in \mathcal{N}\left(X\right)$,

that is, lim_{
v
}(*x* + *z*_{
v
} ) = *x*.

By (II), there exists ${W}_{0}\in \mathcal{N}\left(X\right)$ such that |*f*(*x* + *z*_{
v
} ) - *f*(*x*)| < *ε* for all *f* ∈ *S* and $V\in \mathcal{N}\left(X\right)$ with *W*_{0} ⊃ *V*. Then |*f*_{
v
} (*x* + *z*_{
v
} ) - *f*_{
v
} (*x*)| < *ε* for all $V\in \mathcal{N}\left(X\right)$ with *W*_{0} ⊃ *V*. This contradicts (9) established above. Therefore, (II) implies (I).

We also need the following generalization of the useful lemma on interchange of limit operations due to E. H. Moore, whose proof is similar to the proof of Moore lemma ([[6], p. 28]).

**Lemma 3.10**. *Let D*_{1}*and D*_{2}*be directed sets, and suppose that D*_{1} × *D*_{2}*is directed by the relation* $\left({d}_{1},{d}_{2}\right)\le \left({d}_{1}^{\prime},{d}_{2}^{\prime}\right)$*, which is defined by* ${d}_{1}\le {d}_{1}^{\prime}$ *and* ${d}_{2}\le {d}_{2}^{\prime}$. *Let f*: *D*_{1} × *D*_{2} → *X be a net in the complete topological vector space X. Suppose that:*

*(a) for each d*_{2} ∈ *D*_{2}*, the limit*$g\left({d}_{2}\right)={lim}_{{D}_{1}}f\left({d}_{1},{d}_{2}\right)$*exists, and*

*(b) the limit*$h\left({d}_{1}\right)={lim}_{{D}_{2}}f\left({d}_{1},{d}_{2}\right)$*exists uniformly on D*_{1}.

*Then, the three limits*

*all exist and are equal*.

We now establish the Alaoglu-Bourbaki theorem ([[1], p. 130]) for the pair (*X*, *X*^{(γ,U)}), where *X* is an arbitrary non-trivial topological vector space.

*X*. With the pointwise operations (

*f*+

*g*)(

*x*) =

*f*(

*x*) +

*g*(

*x*) and (

*t f*)(

*x*) =

*t f*(

*x*) for

*x*∈

*X*and $t\in \mathbb{K}$, we have $x:{\mathbb{K}}^{X}\to \mathbb{K}$ is a linear space and each

*x*∈

*X*defines a linear functional $x:{\mathbb{K}}^{X}\to \mathbb{K}$ by letting

*x*(

*f*) =

*f*(

*x*) for $f\in {\mathbb{K}}^{X}$. In fact, for $f,g\in {\mathbb{K}}^{X}$ and $\alpha ,\beta \in \mathbb{K}$,

*x*∈

*X*produces a vector topology

*ωx*on ${\mathbb{K}}^{X}$ such that

The vector topology **V** {*ωx* : *x* ∈ *X*} is just the weak * topology in the pair $\left(X,{\mathbb{K}}^{X}\right)$, and *f*_{
α
} → *f* in $\left({\mathbb{K}}^{X},weak*\right)$ if and only if *f*_{
α
} (*x*) → *f*(*x*) for each *x* ∈ *X* ( [[1], p. 12, p. 38]). Note that weak* is a Hausdorff locally convex topology on ${\mathbb{K}}^{X}$.

**Definition 3.11**. *A subset A* ⊂ *X*^{(γ,U)}*is said to be weak* * *compact in the pair* (*X*, *X*^{(γ,U)}) *or, simply, weak* * *compact if A is compact in* $\left({\mathbb{K}}^{X},weak*\right)$, *and A is said to be relatively weak** *compact in the pair* (*X*, *X*^{
γ,U
} ) *or, simply, relatively weak** *compact if in* $\left({\mathbb{K}}^{X},weak*\right)$ *the closure* $\u0100$ *is compact and* $\u0100\subset {X}^{\left(\gamma ,U\right)}$.

For *A* ⊂ *X*^{(γ,U)}, ${\u0100}^{weak*}$ stands for the closure of *A* in $\left({\mathbb{K}}^{X},weak*\right)$.

**Theorem 3.12**. *For every* $V\in \mathcal{N}\left(X\right)$, *V*^{•} = {*f* ∈ *X*^{(γ,U)}: |*f*(*x*)| ≤ 1, ∀*x* ∈ *V*} *is weak** *compact in the pair* (*X*, *X*^{(γ,U)})*, and every equicontinuous S* ⊂ *X*^{(γ,U)}*is relatively weak** *compact in the pair* (*X*, *X*^{(γ,U)}).

*Proof*. For each *x* ∈ *X*, let *x*(*f*) = *f*(*x*) for *f* ∈ ${\mathbb{K}}^{X}$, then $x:{\mathbb{K}}^{X}\to \mathbb{K}$ is a linear functional. Let $V\in \mathcal{N}\left(X\right)$. By Corollary 3.6, *V*^{•} is equicontinuous on *X* and, by Lemma 3.2, *x*(*V*^{•}) = {*f*(*x*): *f* ∈ *V*^{•}} is bounded in $\mathbb{K}$ for each *x* ∈ *X*, i.e., for each *x* ∈ *X*, *x*(*V*^{•}) is totally bounded in $\mathbb{K}$ and so *V*^{•} is totally bounded in $\left({\mathbb{K}}^{X},\omega x\right)$ for each *x* ∈ *X* ( [[1], p. 84, Theorem 6]. But the weak* topology for ${\mathbb{K}}^{X}$ is just **V** {*ωx* : *x* ∈ *X*} and so *V*^{•} is totally bounded in $\left({\mathbb{K}}^{X},weak*\right)$ ([[1], p. 85, Theorem 7].

*f*

_{ α })

_{α∈I}⊂

*V*

^{•}be a Cauchy net in $\left({\mathbb{K}}^{X},weak*\right)$.

*Then lim*

_{ α }f

_{ α }(

*x*) =

*f*(

*x*) exists at each

*x*∈

*X*and so

*f*

_{ α }→

*f*in $\left({\mathbb{K}}^{X},weak*\right)$. For

*x*∈

*X*,

*u*∈

*U*and $t\in \left\{z\in \mathbb{K}:\phantom{\rule{2.77695pt}{0ex}}\mid z\mid \phantom{\rule{2.77695pt}{0ex}}\le 1\right\}$,

*r*

_{ α }→

*r*and

*s*

_{ α }→

*s*in $\mathbb{K}$. Then |

*r*- 1| = lim

_{ α }|

*r*

_{ α }- 1| ≤ |

*γ*(

*t*)|, |

*s*| = lim

_{ α }|

*s*

_{ α }| ≤ |

*γ*(

*t*)|| and

This shows that $f\in {\mathcal{L}}_{\gamma ,U}\left(X,\mathbb{K}\right)$.

*x*

_{ β }→

*x*in

*X*. Since

*V*

^{•}is equicontinuous on

*X*and

*f*

_{ α }∈

*V*

^{•}for all

*α*∈

*I*, it follows from Lemma 3.9 that lim

_{ β }f

_{ α }(

*x*

_{ β }) =

*f*

_{ α }(

*x*) uniformly for

*α*∈

*I*. Then

by Lemma 3.10, i.e., $f:X\to \mathbb{K}$ is continuous and hence *f* ∈ *X*^{(γ,U)}. Moreover, |*f*(*x*)| = lim _{
α
} |*f*_{
α
} (*x*)| ≤ 1 for each *x* ∈ *V*, i.e., *f* ∈ *V*^{•}. Thus, *V*^{•} is complete in $\left({\mathbb{K}}^{X},weak*\right)$. Since $\left({\mathbb{K}}^{X},weak*\right)$ is a topological vector space and *V*^{•} is both totally bounded and complete in $\left({\mathbb{K}}^{X},weak*\right)$, we have *V*^{•} is compact in $\left({\mathbb{K}}^{X},weak*\right)$, i.e., *V*^{•} is weak* compact in the pair (*X*, *X*^{(γ,U)}) ( [[1], p. 88, Theorem 7]).

Assume that *S* ⊂ *X*^{(γ,U)}is equicontinuous on *X*. By Lemma 3.2,

${S}^{\bullet}=\left\{x\in X:\phantom{\rule{2.77695pt}{0ex}}\mid f\left(x\right)\mid \phantom{\rule{2.77695pt}{0ex}}\le 1,\forall f\in S\right\}\in \mathcal{N}\left(X\right)$, it follows from what is established above that (*S*^{•})^{•} = {*f* ∈ *X*^{(γ,U)}: |*f*(*x*)| ≤ 1, ∀*x* ∈ *S*^{•}} is compact in the Hausdorff space $\left({\mathbb{K}}^{X},weak*\right)$. Then *S* ⊂ (*S*^{•})^{•} shows that ${\stackrel{\u0304}{S}}^{weak*}\subset {\left({S}^{\bullet}\right)}^{\bullet}\subset {X}^{\left(\gamma ,U\right)}$ and *S* is relatively weak* compact in (*X*, *X*^{(γ,U)}).

Theorem 3.12 is a version of Alaoglu-Bourbaki theorem for the demi-linear dual pair (*X*, *X*^{(γ,U)}), by which we can establish an improved Banach-Alaoglu theorem ( [[1], p. 130] as follows.

**Corollary 3.13**(Banach-Alaoglu).

*Let X be a seminormed space and M*> 0

*. Then*

*is weak** *compact in the pair* (*X*, *X*^{(γ,U)}).

*Proof*. Since sup_{f∈S}sup_{||x||≤1}|*f*(*x*)| ≤ *M* < +∞, Corollary 3.8 shows that *S* is equicontinuous on *X*. By Theorem 3.12, ${\stackrel{\u0304}{S}}^{weak*}\subset {X}^{\left(\gamma ,U\right)}$ and ${\stackrel{\u0304}{S}}^{weak*}$ is compact in $\left({\mathbb{K}}^{X},weak*\right)$.

*f*

_{ α })

_{α∈I}be a net in

*S*such that lim

_{ α }f

_{ α }(

*x*) =

*f*(

*x*) at each

*x*∈

*X*. Then

*f*∈

*X*,

^{(γ,U)}and

i.e., *f* ∈ *S*. Thus, ${\stackrel{\u0304}{S}}^{weak*}=S$.

**Theorem 3.14**. *Let X be a separable space, K a weak** *compact set in X*^{(γ,U)}*, S an equicontinuous set in X*^{(γ,U)}*, and* $V\in \mathcal{N}\left(X\right)$, ${V}^{\bullet}=\left\{f\in {X}^{\left(\gamma ,U\right)}:\mid f\left(x\right)\mid \phantom{\rule{2.77695pt}{0ex}}\le 1,\forall x\in V\right\}$. *Then*(*S*, *weak**) *is metrizable, and both* (*K*, *weak**) *and* (*V*^{•}, *weak**) *are compact metric spaces*.

*Proof*. Assume that ${\left\{{x}_{n}\right\}}_{n=1}^{\infty}$ is dense in

*X*. Let

Then, *d*(·,·) is a pseudometric on ${\mathbb{K}}^{X}$. If *f*, *g* ∈ *X*^{(γ,U)}and *d*(*f*, *g*) = 0, then *f*(*x*_{
n
} ) = *g*(*x*_{
n
} ) for all *n*. Since both *f* and *g* are continuous on *X* and ${\left\{{x}_{n}\right\}}_{n=1}^{\infty}$ is dense in *X*, *f*(*x*) = *g*(*x*) for all *x* ∈ *X*, i.e., *f* = *g*. This shows that (*X*^{(γ,U)}, *d*) is a metric space, and *f*_{
k
} → *f* in (*X*^{(γ,U)}, *d*) if and only if lim_{
k
} f_{
k
}(*x*_{
n
} ) = *f*(*x*_{
n
} ) for each *n* ∈ ℕ. Hence, weak* is stronger than *d*(·, ·) and so the compact space (*K*, *weak**) is homeomorphic to the (Hausdorff) metric space (*K*, *d*). Thus, (*K*, *weak**) is a compact metric space.

By Theorem 3.12, in $\left({\mathbb{K}}^{X},weak*\right)$ the closure ${\stackrel{\u0304}{S}}^{weak*}\subset {X}^{\left(\gamma ,U\right)}$, and both $\left({\stackrel{\u0304}{S}}^{weak*},weak*\right)$ and (*V*^{•}, *weak**) are compact and so they are compact metric spaces.

The following special case of Theorem 3.14 is a well-known fact ([[1], p. 143]).

**Corollary 3.15**. *Let X be a separable locally convex space with the dual X*'*, K a weak** *compact set in X*'*, S an equicontinuous set in X*'*, and* $V\in \mathcal{N}\left(X\right)$, *V*^{°} = {*f* ∈ *X*^{0} : |*f*(*x*)| ≤ 1, ∀*x* ∈ *V*}*. Then* (*S*, *weak**) *is metrizable, and both* (*K*, *weak**) *and* (*V*^{°}, *weak**) *are compact metric spaces*.

**Corollary 3.16**. *Let X be a separable space and S an equicontinuous set in X*^{(γ,U)}*. Every sequence* {*f*_{
n
} } *in S has a subsequence* $\left\{{f}_{{n}_{k}}\right\}$ *such that* ${lim}_{k}{f}_{{n}_{k}}\left(x\right)=f\left(x\right)$ *exists at each X*∈ *X and the limit function f* ∈ *X*^{(γ,U)}*, i.e., f is both continuous and demi-linear*.

*Proof*. By Theorems 3.12 and 3.14, ${\stackrel{\u0304}{S}}^{weak*}\subset {X}^{\left(\gamma ,U\right)}$ and $\left({\stackrel{\u0304}{S}}^{weak*},weak*\right)$ is a compact metric space. Then $\left({\stackrel{\u0304}{S}}^{weak*},weak*\right)$ is sequentially compact.

Combining Theorem 1.4 and Corollary 3.16, we have the following

**Corollary 3.17**. *Assume that X is of second category and separable, e.g., separable Fréchet spaces such as L*^{
p
} (0, 1)*(p* > 0*), C*[0,1]*, c*_{0}*, c, l*^{
p
}*(p* > 0*), etc. If S* ⊂ *X*^{(γ,U)}*is pointwise bounded on X, then every sequence* {*f*_{
n
} } *in S has a subsequence* $\left\{{f}_{{n}_{k}}\right\}$ *such that* ${lim}_{k}{f}_{{n}_{k}}\left(x\right)=f\left(x\right)$ *exists at each x*∈ *X, and f* ∈ *X*^{(γ,U)}.

For *C* ≥ 1 and *δ* > 0, letting *γ*(*t*) = *Ct* for *t* ∈ ℝ and *U* = (-*δ*,*δ*), we have *γ* ∈ *C*(0) and $U\in \mathcal{N}\left(\mathbb{R}\right)$. Then let ℝ^{(C,δ)}= ℝ^{(γ,U)}. It is easy to see that every $f\in {\mathcal{L}}_{\gamma ,U}\left(\mathbb{R},\mathbb{R}\right)$ is continuous and so ${\mathbb{R}}^{\left(C,\delta \right)}={\mathcal{L}}_{\gamma ,U}\left(\mathbb{R},\mathbb{R}\right)$. Thus, ℝ^{(C,δ)}contains all linear functions and various nonlinear functions. It is noted that many functions in ℝ^{(C,δ)}have very complicated graphs.

For *S* ⊂ ℝ^{(C,δ)}, there is an interesting fact: a local behavior in a small interval (-*ε*, *ε*) implies a nice behavior on (-∞, +∞).

**Example 3.18**. *Let S* ⊂ ℝ^{(C,δ)}*. If there exists M*, *ε* > 0 *such that* |*f*(*x*)| ≤ *M for every f* ∈ *S and x* ∈ (-*ε*, *ε*)*, then every* {*f*_{
n
} } ⊂ *S has a subsequence* $\left\{{f}_{{n}_{\mathbb{K}}}\right\}$ *such that* ${lim}_{k}{f}_{{n}_{k}}\left(x\right)=f\left(x\right)$ *exists at each x*∈ ℝ*, and f* ∈ ℝ^{(C,δ)}.

By Theorem 3.14, ((-*ε*, *ε*)^{•}, *weak**) is a compact metric space and so it is sequentially compact. Similarly, we have

**Example 3.19**. *Let p* > 0 *and S* ⊂ (*L*^{
p
} (0, 1))^{(γ,U)}*. If there exists ε* > 0 *such that* |*f*(*x*)| ≤ 1 *whenever f* ∈ *S and X* ∈ *L*^{
p
} (0, 1) *with* ||*x*|| < *ε, then every* {*f*_{
n
} } ⊂ *S has a subsequence* $\left\{{f}_{{n}_{k}}\right\}$ *such that* ${lim}_{k}{f}_{{n}_{k}}\left(x\right)=f\left(x\right)$ *exists for all x*∈ *L*^{
p
} (0, 1)*, and f* ∈ (*L*^{
p
} (0, 1))^{(γ,U)}.

We shall show that the condition "sup _{f∈S,||x||<ε}| *f*(*x*)| ≤ 1" in Example 3.19 can be weakened as "sup_{f∈S}|*f*(*x*)| < +∞, ∀ ||*x*|| < *ε*" (see Corollary 3.20).

In general, combining Theorems 3.12 and 3.14, we have

**Corollary 3.20**. *Let S* ⊂ *X*^{(γ,U)}*. If there exists* $V\in \mathcal{N}\left(X\right)$ *such that* sup _{f∈S,x∈V}|*f*(*x*)| < +∞*, then*

*(a) S is equicontinuous on X*,

*(b) S is relatively weak* * *compact*,

*(c) every net*(*f*_{
α
} ) *in S has a subnet* (*f*_{
ξ
} (*α*)) *such that* lim_{ξ(α)}*f*_{
ξ
} (*α*)(*x*) = *f*(*x*) *exists for all x* ∈ *X, and f* ∈ *X*^{(γ,U)}.

*If, in addition, x is separable, then*

*(d) every* {*f*_{
n
} } ⊂ *S has a subsequence* $\left\{{f}_{{n}_{k}}\right\}$ *such that* ${lim}_{k}{f}_{{n}_{k}}\left(x\right)=f\left(x\right)$ *exists for all x*∈ *X, and f* ∈ *X*^{(γ,U)}.

In fact, for *M* = sup_{f∈S,x∈V}|*f*(*x*)|, we have $A=\left\{\frac{1}{M+1}f:f\in S\right\}\subset {V}^{\bullet}$ and (a)-(d) hold for *A*, i.e., *S* satisfies (a)-(d).

If *X* is of second category, then the condition "there exists $V\in \mathcal{N}\left(X\right)$ such that sup_{f∈S,x∈V}|*f*(*x*)| < +∞" in Corollary 3.20 can be weakened as "there exists $V\in \mathcal{N}\left(X\right)$ such that sup *f*∈*S* |*f*(*x*)| < +∞, ∀*x* ∈ *V*".

To see this, we first establish a simple fact.

**Lemma 3.21**. *Let* $\mathrm{\Gamma}\subset {\mathcal{L}}_{\gamma ,U}\left(X,Y\right)$*. If there exists* $V\in \mathcal{N}\left(X\right)$ *such that*{*f*(*x*): *f* ∈ Г} *is bounded at each x* ∈ *V, then* {*f*(*x*): *f* ∈ Г} *is bounded at each x* ∈ *X*.

*Proof*. Let

*x*∈

*X*. There exists

*n*

_{0}∈ ℕ such that $\frac{1}{{n}_{0}}x\in V\cap U$. By Lemma 3.1, for each

*f*∈ Г, we have

Since $\frac{x}{{n}_{0}}\in V$, $\left\{f\left(\frac{x}{{n}_{0}}\right):f\in \mathrm{\Gamma}\right\}$ is bounded and so $\left\{tf\left(\frac{x}{{n}_{0}}\right):f\in \mathrm{\Gamma},\mid t\mid \phantom{\rule{2.77695pt}{0ex}}\le {2\left(1\phantom{\rule{2.77695pt}{0ex}}+\mid \gamma \left(1\right)\mid \right)}^{{n}_{0}-1}-1\right\}$ is bounded.

Now we can improve Theorems 1.4 and 1.5 as follows.

**Theorem 3.22**. *Assume that x is of second category and* $\mathrm{\Gamma}\subset \left\{f\in {\mathcal{L}}_{\gamma ,U}\left(X,Y\right):f\phantom{\rule{2.77695pt}{0ex}}iscontinuous\right\}$. *If there exists* $V\in \mathcal{N}\left(X\right)$ *such that* Г *is pointwise bounded on V, then* Г *is equicontinuous on X, and* Г *is uniformly bounded on each bounded subset of X*.

**Corollary 3.23**. *Assume that x is of second category and S* ⊂ *X*^{(γ,U)}*. If there exists* $V\in \mathcal{N}\left(X\right)$ *such that* sup_{f∈S}|*f*(*x*)| < +∞ *at each x* ∈ *V, then (a)-(c) hold for S. If, in addition, X is separable, then (d) holds for S*.

We now show that every equicontinuous *S* ⊂ *X*^{(γ,U)}has a nice behavior on any compact subset of *X*.

**Theorem 3.24**. *Let X be a Hausdorff topological vector space. If S is an equicontinuous subset of X*^{(γ,U)}*and* Ω *is a compact subset of X, then every* {*f*_{
n
} } ⊂ *S has a subsequence* $\left\{{f}_{{n}_{k}}\right\}$ *such that* ${lim}_{k}{f}_{{n}_{k}}\left(x\right)=f\left(x\right)$ *uniformly for x*∈ Ω *and f* : $f:\mathrm{\Omega}\to \mathbb{K}$*is continuous*.

*Proof*. Let *K* = {*f* |_{Ω}: *f* ∈ *S*}. Then *K* ⊂ *C*(Ω) and *K* is equicontinuous at each *x* ∈ Ω. Suppose that sup _{f∈K}||*f*||_{∞} = sup _{f∈K,x∈Ω}|*f*(*x*)| = +∞. Then there exist sequences {*f*_{
n
} } ⊂ *S* and {*x*_{
n
} } ⊂ Ω such that |*f*_{
n
} (*x*_{
n
} )| > *n*, ∀*n* ∈ ℕ. By Lemma 3.2, we may assume that *x*_{
n
} ≠ *x*_{
m
} for *n* ≠ *m*.

Since Ω is compact, ${\left\{{x}_{n}\right\}}_{n=1}^{\infty}$ has a cluster point *x* ∈ Ω.

*S*is equicontinuous at

*x*, there exists $V\in \mathcal{N}\left(X\right)$ such that |

*f*(

*y*) -

*f*(

*x*)| < 1 for all

*f*∈

*S*and

*y*∈

*x*+

*V*, i.e., |

*f*(

*y*)| < |

*f*(

*x*)| + 1 for all

*f*∈

*S*and

*y*∈

*x*+

*V*. Observing that |

*f*

_{ n }(

*x*

_{ n })| >

*n*for all

*n*∈ ℕ and {

*f*

_{ n }} ⊂

*S*, there exists

*n*

_{0}∈ ℕ such that

*x*

_{ n }∉

*x*+

*V*for all

*n*>

*n*

_{0}. Since (

*x*+

*V*) ∩ Ω contains some

*x*

_{ n }with

*x*

_{ n }≠

*x*, it follows that

where *m* ≤ *n*_{0}. But *X* is Hausdorff, so Ω is also Hausdorff. Then there exists ${V}_{0}\in \mathcal{N}\left(X\right)$ such that *V*_{0} ⊊ *V* and (*x* + *V*_{0}) ∩ (Ω ∩ {*y*_{1}, *y*_{2}, · · ·, *y*_{
m
} }) = ∅. Hence *x*_{
n
} ∈ (*x* + *V*_{0}) ∩ Ω implies that *x*_{
n
} = *x*.

This contradicts the fact that *x* is a cluster point of ${\left\{{x}_{n}\right\}}_{n=1}^{\infty}$. Hence, ${sup}_{f\in \mathbb{K}}\parallel f\mid {\mid}_{\infty}<+\infty $

By the Arzela-Ascoli theorem, *K* is relatively compact in the metric space (*C*(Ω), ||·||_{∞}). Hence, every {*f*_{
n
} } ⊂ *S* has a subsequence $\left\{{f}_{{n}_{k}}\right\}$ such that $\parallel {{f}_{{n}_{K}}\mid}_{\mathrm{\Omega}}-f{\parallel}_{\infty}\to 0$, where *f* ∈ *C*(Ω), i.e., ${lim}_{k}{f}_{{n}_{k}}\left(x\right)=f\left(x\right)$ uniformly for *x* ∈ Ω.

**Corollary 3.25**. *Let X* = ℝ ^{
n
} *or* ℂ ^{
n
}*, ε* > 0 *and D*_{
m
} = {*x* ∈ *X* : ||*x*|| ≤ *mε*}, ∀*m* ∈ ℕ*. If S* ⊂ *X*^{(γ,U)}*is pointwise bounded on D*_{1}*, then every sequence* {*f*_{
k
} } ⊂ *S has a subsequence* $\left\{{f}_{{k}_{i}}\right\}$ *such that* ${lim}_{i}{f}_{{k}_{i}}\left(x\right)=f\left(x\right)$ *uniformly on each D*_{
m
}*, where f* ∈ *X*^{(γ,U)}.

*Proof*. Theorem 3.22 shows that *S* is equicontinuous on *X* and, by Theorem 3.24, {*f*_{
k
} } has a subsequence $\left\{{f}_{{\mathbb{K}}_{i}}\right\}$ such that ${lim}_{i}{f}_{{k}_{i}}\left(x\right)$ exists uniformly on *D*_{1}. Then ${\left\{{f}_{{k}_{i}}\right\}}_{i=2}^{\infty}$ has a subsequence $\left\{{f}_{{k}_{{i}_{v}}}\right\}$ such ${lim}_{v}{f}_{{k}_{{i}_{v}}}\left(x\right)$ exists uniformly on *D*_{2}. Proceeding inductively, the diagonal procedure yields a subsequence {*g*_{
i
} } of {*f*_{
k
} } such that lim_{
i
} *g*_{
i
}(*x*) exists uniformly on each *D*_{
m
} . Then lim_{
i
} *g*_{
i
}(*x*) = *f*(*x*) exists at each *x* ∈ *X* and $f\in {\stackrel{\u0304}{S}}^{weak*}$ in $\left({\mathbb{K}}^{X},weak*\right)$. By Theorem 3.12, *f* ∈ *X*^{(γ,U)}.

## Declarations

## Authors’ Affiliations

## References

- Wilansky A:
*Modern Methods in Topological Vector Spaces.*McGraw-Hill, New York; 1978.Google Scholar - Li R, Zhong S, Li L:
**Demi-linear analysis I--basic principles.***J Korean Math Soc*2009,**46**(3):643–656. 10.4134/JKMS.2009.46.3.643MATHMathSciNetView ArticleGoogle Scholar - Khaleelulla SM:
*Counterexamples in Topological Vector Spaces.*Springer, New York; 1982.Google Scholar - Iyahen SO:
**Semiconvex spaces.***Glasg Math J*1968,**9:**111–118. 10.1017/S0017089500000380MATHMathSciNetView ArticleGoogle Scholar - Köthe G:
*Topological Vector Spaces I.*Springer, New York; 1969.Google Scholar - Dunford N, Schwartz J Interscience, New York; 1958.Google Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.