Skip to main content

Periodic solutions of second-order Liénard equations with-Laplacian-like operators

Abstract

The existence of periodic solutions for second-order Liénard equations with-Laplacian-like operator is studied by applying new generalization of polar coordinates.

[12345678910111213141516]

References

  1. 1.

    Burton TA, Townsend CG: On the generalized Liénard equation with forcing function. Journal of Differential Equations 1968,4(4):620–633. 10.1016/0022-0396(68)90012-0

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    del Pino MA, Manásevich RF, Murúa AE: Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE. Nonlinear Analysis. Theory, Methods & Applications 1992,18(1):79–92. 10.1016/0362-546X(92)90048-J

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    del Pino MA, Manásevich RF, Murúa A: On the number ofperiodic solutions forusing the Poincaré-Birkhoff theorem. Journal of Differential Equations 1992,95(2):240–258. 10.1016/0022-0396(92)90031-H

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Ding TR, Iannacci R, Zanolin F: Existence and multiplicity results for periodic solutions of semilinear Duffing equations. Journal of Differential Equations 1993,105(2):364–409. 10.1006/jdeq.1993.1093

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Fabry C, Fayyad D: Periodic solutions of second order differential equations with a -Laplacian and asymmetric nonlinearities. Rendiconti dell'Istituto di Matematica dell'Università di Trieste 1992,24(1–2):207–227 (1994).

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Fabry C, Mawhin J, Nkashama MN: A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations. Bulletin of the London Mathematical Society 1986,18(2):173–180. 10.1112/blms/18.2.173

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Gossez J-P, Omari P: Periodic solutions of a second order ordinary differential equation: a necessary and sufficient condition for nonresonance. Journal of Differential Equations 1991,94(1):67–82. 10.1016/0022-0396(91)90103-G

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Manásevich RF, Mawhin J: Periodic solutions for nonlinear systems with-Laplacian-like operators. Journal of Differential Equations 1998,145(2):367–393. 10.1006/jdeq.1998.3425

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Mawhin J, Ward JR Jr.: Periodic solutions of some forced Liénard differential equations at resonance. Archiv der Mathematik 1983,41(4):337–351. 10.1007/BF01371406

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Omari P, Villari G, Zanolin F: Periodic solutions of the Liénard equation with one-sided growth restrictions. Journal of Differential Equations 1987,67(2):278–293. 10.1016/0022-0396(87)90151-3

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Sandqvist A, Andersen KM: A necessary and sufficient condition for the existence of a unique nontrivial periodic solution to a class of equations of Liénard's type. Journal of Differential Equations 1982,46(3):356–378. 10.1016/0022-0396(82)90100-0

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Savel'ev PN: Dissipativity of the generalized Liénard equation. Differential Equations 1992,28(6):794–800.

    MathSciNet  MATH  Google Scholar 

  13. 13.

    Sun W, Ge W: The existence of solutions to Sturm-Liouville boundary value problems with Laplacian-like operator. Acta Mathematicae Applicatae Sinica 2002,18(2):341–348. 10.1007/s102550200034

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Villari G: On the existence of periodic solutions for Liénard's equation. Nonlinear Analysis 1983,7(1):71–78. 10.1016/0362-546X(83)90104-9

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Wang Z: Periodic solutions of the second-order forced Liénard equation via time maps. Nonlinear Analysis. Theory, Methods & Applications. Ser. A: Theory Methods 2002,48(3):445–460.

    Article  MATH  Google Scholar 

  16. 16.

    Wang Y, Ge W: Existence of periodic solutions for nonlinear differential equations with a-Laplacian-like operator. to appear in Applied Mathematics Letters to appear in Applied Mathematics Letters

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Youyu Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, Y., Ge, W. Periodic solutions of second-order Liénard equations with-Laplacian-like operators. J Inequal Appl 2006, 98685 (2006). https://doi.org/10.1155/JIA/2006/98685

Download citation

Keywords

  • Periodic Solution
\