Skip to content


  • Research Article
  • Open Access

On the boundedness of maximal operators and singular operators with kernels in

Journal of Inequalities and Applications20062006:96732

  • Received: 15 November 2005
  • Accepted: 28 May 2006
  • Published:


We establish the -boundedness for a class of singular integral operators and a class of related maximal operators when their singular kernels are given by functions in .


  • Integral Operator
  • Maximal Operator
  • Singular Integral Operator
  • Singular Operator
  • Singular Kernel


Authors’ Affiliations

Department of Mathematics, Yarmouk University, Irbid, Jordan


  1. Al-Qassem HM: bounds for a class of rough maximal operators. preprint preprintGoogle Scholar
  2. Al-Qassem HM, Pan Y: estimates for singular integrals with kernels belonging to certain block spaces. Revista Matemática Iberoamericana 2002,18(3):701–730.MathSciNetView ArticleMATHGoogle Scholar
  3. Al-Qassem HM, Pan Y: Singular integrals along surfaces of revolution with rough kernels. SUT Journal of Mathematics 2003,39(1):55–70.MathSciNetMATHGoogle Scholar
  4. Al-Salman A, Pan Y: Singular integrals with rough kernels in . Journal of the London Mathematical Society. Second Series 2002,66(1):153–174. 10.1112/S0024610702003241MathSciNetView ArticleMATHGoogle Scholar
  5. Ash JM, Ash PF, Fefferman CL, Jones RL: Singular integral operators with complex homogeneity. Studia Mathematica 1979,65(1):31–50.MathSciNetMATHGoogle Scholar
  6. Benedek A, Panzone R: The space , with mixed norm. Duke Mathematical Journal 1961,28(3):301–324. 10.1215/S0012-7094-61-02828-9MathSciNetView ArticleMATHGoogle Scholar
  7. Calderón AP, Zygmund A: On the existence of certain singular integrals. Acta Mathematica 1952,88(1):85–139. 10.1007/BF02392130MathSciNetView ArticleMATHGoogle Scholar
  8. Calderón AP, Zygmund A: On singular integrals. American Journal of Mathematics 1956, 78: 289–309. 10.2307/2372517MathSciNetView ArticleMATHGoogle Scholar
  9. Chen L-K: On a singular integral. Studia Mathematica 1986,85(1):61–72, 1987.MathSciNetMATHGoogle Scholar
  10. Chen L-K, Lin H: A maximal operator related to a class of singular integrals. Illinois Journal of Mathematics 1990,34(1):120–126.MathSciNetMATHGoogle Scholar
  11. Coifman RR, Weiss G: Extensions of Hardy spaces and their use in analysis. Bulletin of the American Mathematical Society 1977,83(4):569–645. 10.1090/S0002-9904-1977-14325-5MathSciNetView ArticleMATHGoogle Scholar
  12. Ding Y, He Q: Weighted boundedness of a rough maximal operator. Acta Mathematica Scientia. English Edition 2000,20(3):417–422.MathSciNetMATHGoogle Scholar
  13. Duoandikoetxea J, Rubio de Francia JL: Maximal and singular integral operators via Fourier transform estimates. Inventiones Mathematicae 1986,84(3):541–561. 10.1007/BF01388746MathSciNetView ArticleMATHGoogle Scholar
  14. Fan D, Pan Y: A singular integral operator with rough kernel. Proceedings of the American Mathematical Society 1997,125(12):3695–3703. 10.1090/S0002-9939-97-04111-7MathSciNetView ArticleMATHGoogle Scholar
  15. Fan D, Pan Y: Singular integral operators with rough kernels supported by subvarieties. American Journal of Mathematics 1997,119(4):799–839. 10.1353/ajm.1997.0024MathSciNetView ArticleMATHGoogle Scholar
  16. Fan D, Pan Y, Yang D: A weighted norm inequality for rough singular integrals. The Tohoku Mathematical Journal 1999,51(2):141–161. 10.2748/tmj/1178224808MathSciNetView ArticleMATHGoogle Scholar
  17. Fefferman R: A note on singular integrals. Proceedings of the American Mathematical Society 1979,74(2):266–270. 10.1090/S0002-9939-1979-0524298-3MathSciNetView ArticleMATHGoogle Scholar
  18. Kim W-J, Wainger S, Wright J, Ziesler S: Singular integrals and maximal functions associated to surfaces of revolution. The Bulletin of the London Mathematical Society 1996,28(3):291–296. 10.1112/blms/28.3.291MathSciNetView ArticleMATHGoogle Scholar
  19. Le HV: Maximal operators and singular integral operators along submanifolds. Journal of Mathematical Analysis and Applications 2004,296(1):44–64. 10.1016/j.jmaa.2004.02.056MathSciNetView ArticleMATHGoogle Scholar
  20. Namazi J: A singular integral. Proceedings of the American Mathematical Society 1986,96(3):421–424. 10.1090/S0002-9939-1986-0822432-2MathSciNetView ArticleMATHGoogle Scholar
  21. Stein EM: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, no. 30. Princeton University Press, New Jersey; 1970:xiv+290.Google Scholar