Skip to content


  • Research Article
  • Open Access

Strong convergence bounds of the Hill-type estimator under second-order regularly varying conditions

Journal of Inequalities and Applications20062006:95124

  • Received: 22 April 2005
  • Accepted: 10 July 2005
  • Published:


Bounds on strong convergences of the Hill-type estimator are established under second-order regularly varying conditions.


  • Strong Convergence
  • Convergence Bound


Authors’ Affiliations

Department of Mathematics, Southwest Normal University, Chongqing, 400715, China
Department of Statistics, University of Nebraska–Lincoln, Lincoln, NE 68583, USA


  1. De Haan L: Extreme value statistics. In Extreme Value Theory and Applications. Edited by: Galambos J. Kluwer Academic, Massachusetts; 1994:93–122.View ArticleGoogle Scholar
  2. Deheuvels P: Strong laws for the th order statistic when . Probability Theory and Related Fields 1986,72(1):133–154. 10.1007/BF00343900MathSciNetView ArticleMATHGoogle Scholar
  3. Deheuvels P: Strong laws for the th order statistic when . II. In Extreme Value Theory (Oberwolfach, 1987), Lecture Notes in Statistics. Volume 51. Springer, New York; 1989:21–35.View ArticleGoogle Scholar
  4. Deheuvels P, Mason DM: The asymptotic behavior of sums of exponential extreme values. Bulletin des Sciences Mathematiques, Series 2 1988,112(2):211–233.MathSciNetMATHGoogle Scholar
  5. Dekkers ALM, de Haan L: On the estimation of the extreme-value index and large quantile estimation. The Annals of Statistics 1989,17(4):1795–1832. 10.1214/aos/1176347396MathSciNetView ArticleMATHGoogle Scholar
  6. Dekkers ALM, Einmahl JHJ, de Haan L: A moment estimator for the index of an extreme-value distribution. The Annals of Statistics 1989,17(4):1833–1855. 10.1214/aos/1176347397MathSciNetView ArticleMATHGoogle Scholar
  7. Drees H: On smooth statistical tail functionals. Scandinavian Journal of Statistics 1998,25(1):187–210. 10.1111/1467-9469.00097MathSciNetView ArticleMATHGoogle Scholar
  8. Hill BM: A simple general approach to inference about the tail of a distribution. The Annals of Statistics 1975,3(5):1163–1174. 10.1214/aos/1176343247MathSciNetView ArticleMATHGoogle Scholar
  9. Pan J: Rate of strong convergence of Pickands' estimator. Acta Scientiarum Naturalium Universitatis Pekinensis 1995,31(3):291–296.MathSciNetMATHGoogle Scholar
  10. Peng Z: An extension of a Pickands-type estimator. Acta Mathematica Sinica 1997,40(5):759–762.MathSciNetMATHGoogle Scholar
  11. Pickands J III: Statistical inference using extreme order statistics. The Annals of Statistics 1975,3(1):119–131. 10.1214/aos/1176343003MathSciNetView ArticleMATHGoogle Scholar
  12. Resnick SI: Extreme Values, Regular Variation, and Point Processes, Applied Probability. A Series of the Applied Probability Trust. Volume 4. Springer, New York; 1987:xii+320.Google Scholar
  13. Wellner JA: Limit theorems for the ratio of the empirical distribution function to the true distribution function. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 1978,45(1):73–88. 10.1007/BF00635964MathSciNetView ArticleMATHGoogle Scholar