Skip to main content

Boundary behaviour of analytic functions in spaces of Dirichlet type

Abstract

For and, we let be the space of all analytic functions in such that belongs to the weighted Bergman space. We obtain a number of sharp results concerning the existence of tangential limits for functions in the spaces. We also study the size of the exceptional set, where denotes the radial variation of along the radius, for functions.

[1234567891011121314151617181920212223242526272829303132]

References

  1. 1.

    Ahern PR: The mean modulus and the derivative of an inner function. Indiana University Mathematics Journal 1979,28(2):311–347. 10.1512/iumj.1979.28.28022

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Ahern PR, Clark DN: On inner functions with-derivative. The Michigan Mathematical Journal 1974, 21: 115–127.

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Arazy J, Fisher SD, Peetre J: Möbius invariant function spaces. Journal für die reine und angewandte Mathematik 1985, 363: 110–145.

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Baernstein A II, Girela D, Peláez JÁ: Univalent functions, Hardy spaces and spaces of Dirichlet type. Illinois Journal of Mathematics 2004,48(3):837–859.

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Beurling A: Ensembles exceptionnels. Acta Mathematica 1939, 72: 1–13.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Buckley SM, Koskela P, Vukotić D: Fractional integration, differentiation, and weighted Bergman spaces. Mathematical Proceedings of the Cambridge Philosophical Society 1999,126(2):369–385. 10.1017/S030500419800334X

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Cargo GT: Angular and tangential limits of Blaschke products and their successive derivatives. Canadian Journal of Mathematics 1962, 14: 334–348. 10.4153/CJM-1962-026-2

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Collingwood EF, Lohwater AJ: The Theory of Cluster Sets, Cambridge Tracts in Mathematics and Mathematical Physics, no. 56. Cambridge University Press, Cambridge; 1966:xi+211.

    Google Scholar 

  9. 9.

    Donaire JJ, Girela D, Vukotić D: On univalent functions in some Möbius invariant spaces. Journal für die reine und angewandte Mathematik 2002, 553: 43–72.

    MATH  Google Scholar 

  10. 10.

    Duren PL: Theory of Hp Spaces, Pure and Applied Mathematics. Volume 38. Academic Press, New York; 1970:xii+258. reprint: Dover, New York, 2000

    Google Scholar 

  11. 11.

    Duren PL, Schuster AP: Bergman Spaces, Mathematical Surveys and Monographs. Volume 100. American Mathematical Society, Rhode Island; 2004:x+318.

    Google Scholar 

  12. 12.

    Flett TM: The dual of an inequality of Hardy and Littlewood and some related inequalities. Journal of Mathematical Analysis and Applications 1972, 38: 746–765. 10.1016/0022-247X(72)90081-9

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Girela D, Peláez JÁ: Non-stable classes of analytic functions. International Journal of Pure and Applied Mathematics 2005,21(4):553–563.

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Girela D, Peláez JÁ: Carleson measures for spaces of Dirichlet type. to appear in Integral Equations and Operator Theory to appear in Integral Equations and Operator Theory

  15. 15.

    Girela D, Peláez JÁ: Growth properties and sequences of zeros of analytic functions in spaces of Dirichlet type. to appear in Journal of the Australian Mathematical Society to appear in Journal of the Australian Mathematical Society

  16. 16.

    Hedenmalm H, Korenblum B, Zhu KH: Theory of Bergman Spaces, Graduate Texts in Mathematics. Volume 199. Springer, New York; 2000:x+286.

    Google Scholar 

  17. 17.

    Kahane J-P, Salem R: Ensembles parfaits et séries trigonométriques, Actualités Sci. Indust., no. 1301. Hermann, Paris; 1963:192.

    Google Scholar 

  18. 18.

    Kim HO: Derivatives of Blaschke products. Pacific Journal of Mathematics 1984,114(1):175–190.

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Kinney JR: Tangential limits of functions of the class. Proceedings of the American Mathematical Society 1963, 14: 68–70.

    MathSciNet  MATH  Google Scholar 

  20. 20.

    Littlewood JE: On a theorem of Fatou. Journal of the London Mathematical Society 1927, 2: 172–176. 10.1112/jlms/s1-2.3.172

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Littlewood JE, Paley REAC: Theorems on Fourier series and power series. II. Proceedings of the London Mathematical Society 1936, 42: 52–89.

    MathSciNet  MATH  Google Scholar 

  22. 22.

    Lohwater AJ, Piranian G: The boundary behavior of functions analytic in a disk. Annales Academiae Scientiarum Fennicae. Series A I 1957,1957(239):17.

    MathSciNet  MATH  Google Scholar 

  23. 23.

    Nagel A, Rudin W, Shapiro JH: Tangential boundary behavior of functions in Dirichlet-type spaces. Annals of Mathematics. Second Series 1982,116(2):331–360. 10.2307/2007064

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Protas D: Blaschke products with derivative inand . The Michigan Mathematical Journal 1973, 20: 393–396.

    MathSciNet  MATH  Google Scholar 

  25. 25.

    Rudin W: The radial variation of analytic functions. Duke Mathematical Journal 1955,22(2):235–242. 10.1215/S0012-7094-55-02224-9

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Twomey JB: Tangential limits for certain classes of analytic functions. Mathematika 1989,36(1):39–49. 10.1112/S0025579300013553

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Twomey JB: Radial variation of functions in Dirichlet-type spaces. Mathematika 1997,44(2):267–277. 10.1112/S0025579300012596

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Vinogradov SA: Multiplication and division in the space of analytic functions with an area-integrable derivative, and in some related spaces. Rossiĭ skaya Akademiya Nauk. Sankt-Peterburgskoe Otdelenie. Matematicheskiĭ Institut im. V. A. Steklova. Zapiski Nauchnykh Seminarov (POMI) 1995,222(23):45–77, 308. translation in Journal of Mathematical Sciences (New York) 87 (1997), no. 5, 3806–3827, Issled. po Linein. Oper. i Teor. Funktsii translation in Journal of Mathematical Sciences (New York) 87 (1997), no. 5, 3806–3827, Issled. po Linein. Oper. i Teor. Funktsii

    MATH  Google Scholar 

  29. 29.

    Zhu KH: Analytic Besov spaces. Journal of Mathematical Analysis and Applications 1991,157(2):318–336. 10.1016/0022-247X(91)90091-D

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Zygmund A: On certain integrals. Transactions of the American Mathematical Society 1944,55(2):170–204. 10.2307/1990189

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Zygmund A: On a theorem of Littlewood. Summa Brasiliensis Mathematicae 1949,2(5):51–57.

    MathSciNet  MATH  Google Scholar 

  32. 32.

    Zygmund A: Trigonometric Series. Vols. I, II. 2nd edition. Cambridge University Press, New York; 1959:xii+383, vii+354.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daniel Girela.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Girela, D., Peláez, J.Á. Boundary behaviour of analytic functions in spaces of Dirichlet type. J Inequal Appl 2006, 927957 (2006). https://doi.org/10.1155/JIA/2006/92795

Download citation

Keywords

  • Analytic Function
  • Bergman Space
  • Radial Variation
  • Boundary Behaviour
  • Weighted Bergman Space
\