Skip to main content

Limiting case of the boundedness of fractional integral operators on nonhomogeneous space

Abstract

We show the boundedness of fractional integral operators by means of extrapolation. We also show that our result is sharp.

[123456789101112131415]

References

  1. 1.

    Edmunds DE, Kokilashvili V, Meskhi A: Bounded and Compact Integral Operators, Mathematics and Its Applications. Volume 543. Kluwer Academic, Dordrecht; 2002:xvi+643. chapter 6 chapter 6

    Google Scholar 

  2. 2.

    García-Cuerva J, Gatto AE: Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Mathematica 2004,162(3):245–261. 10.4064/sm162-3-5

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Han Y, Yang D: Triebel-Lizorkin spaces with non-doubling measures. Studia Mathematica 2004,162(2):105–140. 10.4064/sm162-2-2

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Kokilashvili V: Weighted estimates for classical integral operators. In Nonlinear Analysis, Function Spaces and Applications, Vol. 4 (Roudnice nad Labem, 1990), Teubner-Texte Math.. Volume 119. Teubner, Leipzig; 1990:86–103.

    Google Scholar 

  5. 5.

    Kokilashvili V, Meskhi A: Fractional integrals on measure spaces. Fractional Calculus & Applied Analysis 2001,4(1):1–24.

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Nakai E: Generalized fractional integrals on Orlicz-Morrey spaces. In Banach and Function Spaces. Yokohama Publishers, Yokohama; 2004:323–333.

    Google Scholar 

  7. 7.

    Nazarov F, Treil S, Volberg A: Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces. International Mathematics Research Notices 1998,1998(9):463–487. 10.1155/S1073792898000312

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Nazarov F, Treil S, Volberg A: The-theorem on non-homogeneous spaces. Acta Mathematica 2003,190(2):151–239. 10.1007/BF02392690

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Sawano Y: -valued extension of the fractional maximal operators for non-doubling measures via potential operators. International Journal of Pure and Applied Mathematics 2006,26(4):505–523.

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Sawano Y, Tanaka H: Morrey spaces for non-doubling measures. Acta Mathematica Sinica 2005,21(6):1535–1544. 10.1007/s10114-005-0660-z

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Tolsa X: BMO,, and Calderón-Zygmund operators for non doubling measures. Mathematische Annalen 2001,319(1):89–149. 10.1007/PL00004432

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Tolsa X: Painlevé's problem and the semiadditivity of analytic capacity. Acta Mathematica 2003,190(1):105–149. 10.1007/BF02393237

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Tolsa X: Bilipschitz maps, analytic capacity, and the Cauchy integral. Annals of Mathematics 2005,162(3):1243–1304. 10.4007/annals.2005.162.1243

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Trudinger NS: On imbeddings into Orlicz spaces and some applications. Journal of Mathematics and Mechanics 1967, 17: 473–483.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Zygmund A: Trigonometric Series. Vols. I, II. 2nd edition. Cambridge University Press, New York; 1959:Vol. I. xii+383; Vol. II. vii+354.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Sawano.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Sawano, Y., Sobukawa, T. & Tanaka, H. Limiting case of the boundedness of fractional integral operators on nonhomogeneous space. J Inequal Appl 2006, 092470 (2006). https://doi.org/10.1155/JIA/2006/92470

Download citation

Keywords

  • Integral Operator
  • Fractional Integral Operator
  • Nonhomogeneous Space
\