Skip to main content

Parametric problem of completely generalized quasi-variational inequalities

Abstract

This paper is devoted to the study of behaviour and sensitivity analysis of the solution for a class of parametric problem of completely generalized quasi-variational inequalities.

[1234567891011121314]

References

  1. 1.

    Ahmad R, Kazmi KR, Salahuddin : Completely generalized non-linear variational inclusions involving relaxed Lipschitz and relaxed monotone mappings. Nonlinear Analysis Forum 2000, 5: 61–69.

    MATH  MathSciNet  Google Scholar 

  2. 2.

    Cottle RW, Giannessi F, Lions JL: Variational Inequalities and Complementarity Problems, Theory and Applications. John Wiley & Sons, Chichester; 1980:xvii+408.

    Google Scholar 

  3. 3.

    Dafermos S: Sensitivity analysis in variational inequalities. Mathematics of Operations Research 1988,13(3):421–434. 10.1287/moor.13.3.421

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Ding XP, Luo CL: On parametric generalized quasi-variational inequalities. Journal of Optimization Theory and Applications 1999,100(1):195–205. 10.1023/A:1021777217261

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Kinderlehrer D, Stampacchia G: An Introduction to Variational Inequalities and Their Applications, Pure and Applied Mathematics. Volume 88. Academic Press, New York; 1980:xiv+313.

    Google Scholar 

  6. 6.

    Lim T-C: On fixed point stability for set-valued contractive mappings with applications to generalized differential equations. Journal of Mathematical Analysis and Applications 1985,110(2):436–441. 10.1016/0022-247X(85)90306-3

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Mukherjee RN, Verma HL: Sensitivity analysis of generalized variational inequalities. Journal of Mathematical Analysis and Applications 1992,167(2):299–304. 10.1016/0022-247X(92)90207-T

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Nadler SB Jr.: Multi-valued contraction mappings. Pacific Journal of Mathematics 1969,30(2):475–488.

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Noor MA: An iterative scheme for a class of quasivariational inequalities. Journal of Mathematical Analysis and Applications 1985,110(2):463–468. 10.1016/0022-247X(85)90308-7

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    Robinson SM: Sensitivity analysis of variational inequalities by normal-map techniques. In Variational Inequalities and Network Equilibrium Problems (Erice, 1994). Edited by: Giannessi F, Maugeri A. Plenum, New York; 1995:257–269.

    Google Scholar 

  11. 11.

    Salahuddin : Some aspects of variational inequalities, M.S. thesis. AMU, Aligarh; 2000.

    Google Scholar 

  12. 12.

    Salahuddin : On parametric generalized quasivariational inequalities with related Lipschitz and relaxed monotone mappings. Advances in Nonlinear Variational Inequalities 2002,5(1):107–114.

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Siddiqi AH, Ansari QH: An algorithm for a class of quasivariational inequalities. Journal of Mathematical Analysis and Applications 1990,145(2):413–418. 10.1016/0022-247X(90)90409-9

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Yen ND: Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint. Mathematics of Operations Research 1995,20(3):695–708. 10.1287/moor.20.3.695

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Salahuddin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Salahuddin, Ahmad, M.K. & Siddiqi, A.H. Parametric problem of completely generalized quasi-variational inequalities. J Inequal Appl 2006, 86869 (2006). https://doi.org/10.1155/JIA/2006/86869

Download citation

Keywords

  • Sensitivity Analysis
  • Parametric Problem
\