Skip to main content

An impulsive nonlinear singular version of the Gronwall-Bihari inequality


We find bounds for a Gronwall-Bihari type inequality for piecewise continuous functions. Unlike works in the prior literature, here we consider inequalities involving singular kernels in addition to functions with delays.



  1. Bainov DD, Hristova SG: Impulsive integral inequalities with a deviation of the argument. Mathematische Nachrichten 1995, 171: 19–27.

    MathSciNet  Article  MATH  Google Scholar 

  2. Bainov DD, Simeonov PS: Systems with Impulse Effect: Theory and Applications. Ellis Horwood, Chichister; 1989.

    MATH  Google Scholar 

  3. Bainov DD, Simeonov PS: Integral Inequalities and Applications, Mathematics and Its Applications. Volume 57. Kluwer Academic, Dordrecht; 1992:xii+245.

    Book  MATH  Google Scholar 

  4. Butler G, Rogers T: A generalization of a lemma of Bihari and applications to pointwise estimates for integral equations. Journal of Mathematical Analysis and Applications 1971,33(1):77–81. 10.1016/0022-247X(71)90183-1

    MathSciNet  Article  MATH  Google Scholar 

  5. Hristova SG: Nonlinear delay integral inequalities for piecewise continuous functions and applications. Journal of Inequalities in Pure and Applied Mathematics 2004,5(4):1–14. article 88 article 88

    MathSciNet  MATH  Google Scholar 

  6. Kirane M, Tatar N-E: Global existence and stability of some semilinear problems. Archivum Mathematicum (Brno) 2000,36(1):33–44.

    MathSciNet  MATH  Google Scholar 

  7. Kirane M, Tatar N-E: Convergence rates for a reaction-diffusion system. Zeitschrift für Analysis und ihre Anwendungen. Journal for Analysis and Its Applications 2001,20(2):347–357.

    MathSciNet  Article  MATH  Google Scholar 

  8. Krylov NN, Bogolyubov NN: Introduction to Nonlinear Mechanics. Izd. Acad. Sci. Ukr. SSR, Kiev; 1937.

    Google Scholar 

  9. Lakshmikantham V, Bainov DD, Simeonov PS: Theory of Impulsive Differential Equations, Series in Modern Applied Mathematics. Volume 6. World Scientific, New Jersey; 1989:xii+273.

    Book  Google Scholar 

  10. Mazouzi S, Tatar N-E: Global existence for some integro-differential equations with delay subject to non-local conditions. Zeitschrift für Analysis und ihre Anwendungen. Journal for Analysis and Its Applications 2002,21(1):249–256.

    MathSciNet  Article  MATH  Google Scholar 

  11. Medved M: A new approach to an analysis of Henry type integral inequalities and their Bihari type versions. Journal of Mathematical Analysis and Applications 1997,214(2):349–366. 10.1006/jmaa.1997.5532

    MathSciNet  Article  MATH  Google Scholar 

  12. Medved M: Singular integral inequalities and stability of semilinear parabolic equations. Archivum Mathematicum (Brno) 1998,34(1):183–190.

    MathSciNet  MATH  Google Scholar 

  13. Pachpatte BG: Inequalities for Differential and Integral Equations, Mathematics in Science and Engineering. Volume 197. Academic Press, California; 1998:x+611.

    MATH  Google Scholar 

  14. Samoilenko AM, Perestyuk NA: Stability of solutions of differential equations with impulse effect. Differential Equations 1977,13(11):1981–1992.

    Google Scholar 

  15. Samoilenko AM, Perestyuk NA: Impulsive Differential Equations, World Scientific Series on Nonlinear Science. Series A: Monographs and Treatises. Volume 14. World Scientific, New Jersey; 1995:x+462.

    Google Scholar 

  16. Tatar N-E: Exponential decay for a semilinear problem with memory. Arab Journal of Mathematical Sciences 2001,7(1):29–45.

    MathSciNet  MATH  Google Scholar 

  17. Zhang W, Agarwal RP, Akin-Bohner E: On well-posedness of impulsive problems for nonlinear parabolic equations. Nonlinear Studies 2002,9(2):145–153.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nasser-Eddine Tatar.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Tatar, NE. An impulsive nonlinear singular version of the Gronwall-Bihari inequality. J Inequal Appl 2006, 84561 (2006).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • Continuous Function
  • Type Inequality
  • Prior Literature
  • Piecewise Continuous Function
  • Singular Kernel