Skip to main content

Existence and multiplicity of solutions for some three-point nonlinear boundary value problems

Abstract

We study the existence and multiplicity of solutions for the three-point nonlinear boundary value problem,;, where,, and are assumed to be positive and have some singularities, and is a positive parameter. Under certain conditions, we prove that there exists such that the three-point nonlinear boundary value problem has at least two positive solutions for, at least one solution for, and no solution for.

[12345678910111213]

References

  1. 1.

    Choi YS: A singular boundary value problem arising from near-ignition analysis of flame structure. Differential and Integral Equations. An International Journal for Theory and Applications 1991,4(4):891–895.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Dalmasso R: Positive solutions of singular boundary value problems. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 1996,27(6):645–652.

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Feng W, Webb JRL: Solvability of m-point boundary value problems with nonlinear growth. Journal of Mathematical Analysis and Applications 1997,212(2):467–480. 10.1006/jmaa.1997.5520

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Gupta CP, Trofimchuk SI: Existence of a solution of a three-point boundary value problem and the spectral radius of a related linear operator. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 1998,34(4):489–507.

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Ha KS, Lee Y-H: Existence of multiple positive solutions of singular boundary value problems. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 1997,28(8):1429–1438.

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Liu X: Nontrivial solutions of singular nonlinear m-point boundary value problems. Journal of Mathematical Analysis and Applications 2003,284(2):576–590. 10.1016/S0022-247X(03)00365-2

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Ma R, Castaneda N: Existence of solutions of nonlinear-point boundary-value problems. Journal of Mathematical Analysis and Applications 2001,256(2):556–567. 10.1006/jmaa.2000.7320

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Webb JR: Positive solutions of some three point boundary value problems via fixed point index theory. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 2001,47(7):4319–4332.

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Wong FH: Existence of positive solutions of singular boundary value problems. Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A: Theory and Methods 1993,21(5):397–406.

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Xu X: Multiplicity results for positive solutions of some semi-positone three-point boundary value problems. Journal of Mathematical Analysis and Applications 2004,291(2):673–689. 10.1016/j.jmaa.2003.11.037

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Xu X: Positive solutions for singular-point boundary value problems with positive parameter. Journal of Mathematical Analysis and Applications 2004,291(1):352–367. 10.1016/j.jmaa.2003.11.009

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Xu X, Ma J: A note on singular nonlinear boundary value problems. Journal of Mathematical Analysis and Applications 2004,293(1):108–124. 10.1016/j.jmaa.2003.12.017

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Zhang Z, Wang J: The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems. Journal of Computational and Applied Mathematics 2002,147(1):41–52. 10.1016/S0377-0427(02)00390-4

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Donal O'Regan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xian, X., O'Regan, D. Existence and multiplicity of solutions for some three-point nonlinear boundary value problems. J Inequal Appl 2006, 79653 (2006). https://doi.org/10.1155/JIA/2006/79653

Download citation

Keywords

  • Positive Parameter
  • Nonlinear Boundary
\