Skip to main content

Generalized vector quasi-equilibrium problems with set-valued mappings

Abstract

A new mathematical model of generalized vector quasiequilibrium problem with set-valued mappings is introduced, and several existence results of a solution for the generalized vector quasiequilibrium problem with and without-condensing mapping are shown. The results in this paper extend and unify those results in the literature.

[1234567891011121314151617181920212223]

References

  1. 1.

    Ansari QH, Flores-Bazán F: Generalized vector quasi-equilibrium problems with applications. Journal of Mathematical Analysis and Applications 2003,277(1):246–256. 10.1016/S0022-247X(02)00535-8

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Ansari QH, Yao J-C: An existence result for the generalized vector equilibrium problem. Applied Mathematics Letters 1999,12(8):53–56. 10.1016/S0893-9659(99)00121-4

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Aubin J-P, Ekeland I: Applied Nonlinear Analysis, Pure and Applied Mathematics (New York). John Wiley & Sons, New York; 1984:xi+518.

    Google Scholar 

  4. 4.

    Chan D, Pang JS: The generalized quasivariational inequality problem. Mathematics of Operations Research 1982,7(2):211–222. 10.1287/moor.7.2.211

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Chang S-S, Lee BS, Wu X, Cho YJ, Lee GM: On the generalized quasi-variational inequality problems. Journal of Mathematical Analysis and Applications 1996,203(3):686–711. 10.1006/jmaa.1996.0406

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Chen M-P, Lin L-J, Park S: Remarks on generalized quasi-equilibrium problems. Nonlinear Analysis 2003,52(2):433–444. 10.1016/S0362-546X(02)00106-2

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Chiang Y, Chadli O, Yao JC: Existence of solutions to implicit vector variational inequalities. Journal of Optimization Theory and Applications 2003,116(2):251–264. 10.1023/A:1022472103162

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Cubiotti P: A note on Chan and Pang's existence theorem for generalized quasi-variational inequalities. Applied Mathematics Letters 1996,9(3):73–76. 10.1016/0893-9659(96)00035-3

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Fitzpatrick PM, Petryshyn WV: Fixed point theorems for multivalued noncompact acyclic mappings. Pacific Journal of Mathematics 1974,54(2):17–23.

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    Fu J-Y, Wan A-H: Generalized vector equilibrium problems with set-valued mappings. Mathematical Methods of Operations Research 2002,56(2):259–268. 10.1007/s001860200208

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    Kim WK: Existence of maximal element and equilibrium for a nonparacompact-person game. Proceedings of the American Mathematical Society 1992,116(3):797–807.

    MATH  MathSciNet  Google Scholar 

  12. 12.

    Lin L-J, Park S: On some generalized quasi-equilibrium problems. Journal of Mathematical Analysis and Applications 1998,224(2):167–181. 10.1006/jmaa.1998.5964

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Lin L-J, Yu Z-T: Fixed points theorems of KKM-type maps. Nonlinear Analysis 1999,38(2):265–275. 10.1016/S0362-546X(98)00194-1

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Mehta G, Tan K-K, Yuan X-Z: Fixed points, maximal elements and equilibria of generalized games. Nonlinear Analysis 1997,28(4):689–699. 10.1016/0362-546X(95)00183-V

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Peng J-W: Generalized set-valued equilibrium problems in topological vector spaces. Journal of Chongqing Normal University 2000,17(4):36–40.

    MathSciNet  Google Scholar 

  16. 16.

    Peng J-W: Generalized vectorial quasi-equilibrium problem on-space. Journal of Mathematical Research and Exposition 2002,22(4):519–524.

    MATH  MathSciNet  Google Scholar 

  17. 17.

    Su CH, Sehgal VM: Some fixed point theorems for condensing multifunctions in locally convex spaces. Proceedings of the American Mathematical Society 1975,50(1):150–154. 10.1090/S0002-9939-1975-0380530-7

    MATH  MathSciNet  Article  Google Scholar 

  18. 18.

    Tian GQ, Zhou JX: Quasi-variational inequalities without the concavity assumption. Journal of Mathematical Analysis and Applications 1993,172(1):289–299. 10.1006/jmaa.1993.1025

    MATH  MathSciNet  Article  Google Scholar 

  19. 19.

    Wu X, Shen SK: A further generalization of Yannelis-Prabhakar's continuous selection theorem and its applications. Journal of Mathematical Analysis and Applications 1996,197(1):61–74. 10.1006/jmaa.1996.0007

    MATH  MathSciNet  Article  Google Scholar 

  20. 20.

    Yuan GX-Z: Remarks on quasi-variational inequalities and fixed points in locally convex topological vector spaces. Applied Mathematics Letters 1997,10(6):55–61. 10.1016/S0893-9659(97)00105-5

    MATH  MathSciNet  Article  Google Scholar 

  21. 21.

    Yuan X-Z, Tarafdar E: Generalized quasi-variational inequalities and some applications. Nonlinear Analysis, Theory, Methods & Applications 1997,29(1):27–40. 10.1016/S0362-546X(96)00019-3

    MATH  MathSciNet  Article  Google Scholar 

  22. 22.

    Zhang SS: Variational Inequalities and Complementarity Problem Theory with Applications. Shanghai Science and Technology, Shanghai; 1991.

    Google Scholar 

  23. 23.

    Zhou JX, Chen G: Diagonal convexity conditions for problems in convex analysis and quasi-variational inequalities. Journal of Mathematical Analysis and Applications 1988,132(1):213–225. 10.1016/0022-247X(88)90054-6

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jian Wen Peng.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peng, J.W., Zhu, D.L. Generalized vector quasi-equilibrium problems with set-valued mappings. J Inequal Appl 2006, 69252 (2006). https://doi.org/10.1155/JIA/2006/69252

Download citation

Keywords

  • Mathematical Model
  • Existence Result
  • Generalize Vector
  • Vector Quasiequilibrium Problem
  • Generalize Vector Quasiequilibrium Problem
\