Skip to main content

Global solutions for a nonlinear hyperbolic equation with boundary memory source term

Abstract

We study a nonlinear hyperbolic equation with boundary memory source term. By the use of Galerkin procedure, we prove the global existence and the decay property of solution.

[12345678910111213141516]

References

  1. 1.

    Aassila M, Cavalcanti MM, Domingos Cavalcanti VN: Existence and uniform decay of the wave equation with nonlinear boundary damping and boundary memory source term. Calculus of Variations and Partial Differential Equations 2002,15(2):155–180. 10.1007/s005260100096

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Adams RA: Sobolev Spaces. Academic Press, New York; 1975:xviii+268.

    Google Scholar 

  3. 3.

    Bae JJ: Uniform decay for the unilateral problem associated to the Kirchhoff type wave equations with nonlinear boundary damping. Applied Mathematics and Computation 2004,156(1):41–57. 10.1016/j.amc.2003.07.003

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Cavalcanti MM: Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation. Discrete and Continuous Dynamical Systems 2002,8(3):675–695.

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Cavalcanti MM, Domingos Cavalcanti VN, Martinez P: Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term. Journal of Differential Equations 2004,203(1):119–158. 10.1016/j.jde.2004.04.011

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Cavalcanti MM, Domingos Cavalcanti VN, Soriano JA: On existence and asymptotic stability of solutions of the degenerate wave equation with nonlinear boundary conditions. Journal of Mathematical Analysis and Applications 2003,281(1):108–124.

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Giorgi C, Pata V: Asymptotic behavior of a nonlinear hyperbolic heat equation with memory. Nonlinear Differential Equations and Applications 2001,8(2):157–171. 10.1007/PL00001443

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Graffi D: Qualche problema di elettromagnetismo. In Trends in Applications of Pure Mathematics to Mechanics (Conf., Univ. Lecce, Lecce, 1975), Monographs and Studies in Math.. Volume 2. Edited by: Fichera G. Pitman, London; 1976:129–144.

    Google Scholar 

  9. 9.

    Gurtin ME, Pipkin AC: A general theory of heat conduction with finite wave speeds. Archive for Rational Mechanics and Analysis 1968, 31: 113–126. 10.1007/BF00281373

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    Lions J-L: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod; Gauthier-Villars, Paris; 1969:xx+554.

    Google Scholar 

  11. 11.

    Park JY, Bae JJ: On coupled wave equation of Kirchhoff type with nonlinear boundary damping and memory term. Applied Mathematics and Computation 2002,129(1):87–105. 10.1016/S0096-3003(01)00031-5

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    Park JY, Park SH: On solutions for a hyperbolic system with differential inclusion and memory source term on the boundary. Nonlinear Analysis. Theory, Methods & Applications. Series A: Theory and Methods 2004,57(3):459–472.

    MATH  Article  MathSciNet  Google Scholar 

  13. 13.

    Pata V: Attractors for a damped wave equation onwith linear memory. Mathematical Methods in the Applied Sciences 2000,23(7):633–653. 10.1002/(SICI)1099-1476(20000510)23:7<633::AID-MMA135>3.0.CO;2-C

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Vitillaro E: A potential well theory for the wave equation with nonlinear source and boundary damping terms. Glasgow Mathematical Journal 2002,44(3):375–395. 10.1017/S0017089502030045

    MATH  MathSciNet  Article  Google Scholar 

  15. 15.

    Vitillaro E: Global existence for the wave equation with nonlinear boundary damping and source terms. Journal of Differential Equations 2002,186(1):259–298. 10.1016/S0022-0396(02)00023-2

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Yang Z, Chen G: Global existence of solutions for quasi-linear wave equations with viscous damping. Journal of Mathematical Analysis and Applications 2003,285(2):604–618. 10.1016/S0022-247X(03)00448-7

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fuqin Sun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, F., Wang, M. Global solutions for a nonlinear hyperbolic equation with boundary memory source term. J Inequal Appl 2006, 60734 (2006). https://doi.org/10.1155/JIA/2006/60734

Download citation

Keywords

  • Source Term
  • Global Solution
  • Global Existence
  • Hyperbolic Equation
  • Memory Source
\