Skip to content


  • Research Article
  • Open Access

Continuity of multilinear operators on Triebel-Lizorkin spaces

Journal of Inequalities and Applications20062006:58473

  • Received: 4 February 2006
  • Accepted: 28 September 2006
  • Published:


The continuity of some multilinear operators related to certain convolution operators on the Triebel-Lizorkin space is obtained. The operators include Littlewood-Paley operator and Marcinkiewicz operator.


  • Convolution Operator
  • Multilinear Operator


Authors’ Affiliations

Department of Mathematics, Changsha University of Science and Technology, Changsha, 410077, China


  1. Chanillo S: A note on commutators. Indiana University Mathematics Journal 1982,31(1):7–16. 10.1512/iumj.1982.31.31002MathSciNetView ArticleMATHGoogle Scholar
  2. Chen W: A Besov estimate for multilinear singular integrals. Acta Mathematica Sinica. English Series 2000,16(4):613–626. 10.1007/s101140000059MathSciNetView ArticleMATHGoogle Scholar
  3. Cohen J: A sharp estimate for a multilinear singular integral in. Indiana University Mathematics Journal 1981,30(5):693–702. 10.1512/iumj.1981.30.30053MathSciNetView ArticleMATHGoogle Scholar
  4. Cohen J, Gosselin JA: On multilinear singular integrals on. Studia Mathematica 1982,72(3):199–223.MathSciNetMATHGoogle Scholar
  5. Cohen J, Gosselin JA: A BMO estimate for multilinear singular integrals. Illinois Journal of Mathematics 1986,30(3):445–464.MathSciNetMATHGoogle Scholar
  6. Coifman RR, Rochberg R, Weiss G: Factorization theorems for Hardy spaces in several variables. Annals of Mathematics. Second Series 1976,103(3):611–635. 10.2307/1970954MathSciNetView ArticleMATHGoogle Scholar
  7. Ding Y, Lu SZ: Weighted boundedness for a class of rough multilinear operators. Acta Mathematica Sinica. English Series 2001,17(3):517–526. 10.1007/s101140100113MathSciNetView ArticleMATHGoogle Scholar
  8. Janson S: Mean oscillation and commutators of singular integral operators. Arkiv för Matematik 1978,16(2):263–270. 10.1007/BF02386000MathSciNetView ArticleMATHGoogle Scholar
  9. Paluszyński M: Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana University Mathematics Journal 1995,44(1):1–17.MathSciNetMATHGoogle Scholar
  10. Stein EM: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series. Volume 43. Princeton University Press, New Jersey; 1993:xiv+695.Google Scholar
  11. Torchinsky A: Real-Variable Methods in Harmonic Analysis, Pure and Applied Mathematics. Volume 123. Academic Press, Florida; 1986:xii+462.Google Scholar
  12. Torchinsky A, Wang SL: A note on the Marcinkiewicz integral. Colloquium Mathematicum 1990,60/61(1):235–243.MathSciNetMATHGoogle Scholar