Skip to main content


You are viewing the new article page. Let us know what you think. Return to old version

Research Article | Open | Published:

A unifying approach for certain class of maximal functions


We establish estimates for certain class of maximal functions with kernels in. As a consequence of such estimates, we obtain the boundedness of our maximal functions when their kernels are in or in the block space,. Several applications of our results are also presented.



  1. 1.

    Al-Salman A: Rough oscillatory singular integral operators of nonconvolution type. Journal of Mathematical Analysis and Applications 2004,299(1):72–88. 10.1016/j.jmaa.2004.06.006

  2. 2.

    Al-Salman A: On maximal functions with rough kernels in. Collectanea Mathematica 2005,56(1):47–56.

  3. 3.

    Al-Salman A: On a class of singular integral operators with rough kernels. Canadian Mathematical Bulletin 2006,49(1):3–10. 10.4153/CMB-2006-001-9

  4. 4.

    Al-Salman A, Al-Jarrah A: Rough oscillatory singular integral operators. II. Turkish Journal of Mathematics 2003,27(4):565–579.

  5. 5.

    Al-Salman A, Pan Y: Singular integrals with rough kernels in. Journal of the London Mathematical Society. Second Series 2002,66(1):153–174. 10.1112/S0024610702003241

  6. 6.

    Chen J, Fan DS, Pan Y: A note on a Marcinkiewicz integral operator. Mathematische Nachrichten 2001,227(1):33–42. 10.1002/1522-2616(200107)227:1<33::AID-MANA33>3.0.CO;2-0

  7. 7.

    Chen L-K, Lin H: A maximal operator related to a class of singular integrals. Illinois Journal of Mathematics 1990,34(1):120–126.

  8. 8.

    Ding Y, Lu S, Yabuta K: A problem on rough parametric Marcinkiewicz functions. Journal of the Australian Mathematical Society 2002,72(1):13–21. 10.1017/S1446788700003542

  9. 9.

    Duoandikoetxea J: Weighted norm inequalities for homogeneous singular integrals. Transactions of the American Mathematical Society 1993,336(2):869–880. 10.2307/2154381

  10. 10.

    Fan DS, Guo K, Pan Y: estimates for singular integrals associated to homogeneous surfaces. Journal für die reine und angewandte Mathematik 2002, 542: 1–22.

  11. 11.

    Fan DS, Pan Y: Boundedness of certain oscillatory singular integrals. Studia Mathematica 1995,114(2):105–116.

  12. 12.

    Fan DS, Pan Y: Singular integral operators with rough kernels supported by subvarieties. American Journal of Mathematics 1997,119(4):799–839. 10.1353/ajm.1997.0024

  13. 13.

    Fan DS, Pan Y, Yang D: A weighted norm inequality for rough singular integrals. The Tohoku Mathematical Journal. Second Series 1999,51(2):141–161.

  14. 14.

    García-Cuerva J, Rubio de Francia JL: Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies. Volume 116. North-Holland, Amsterdam; 1985:x+604.

  15. 15.

    Hörmander L: Estimates for translation invariant operators inspaces. Acta Mathematica 1960, 104: 93–140. 10.1007/BF02547187

  16. 16.

    Jiang YS, Lu SZ: Oscillatory singular integrals with rough kernel. In Harmonic Analysis in China, Math. Appl.. Volume 327. Edited by: Cheng MD, Deng DG, Gong S, Yang C-C. Kluwer Academic, Dordrecht; 1995:135–145.

  17. 17.

    Keitoku M, Sato E: Block spaces on the unit sphere in. Proceedings of the American Mathematical Society 1993,119(2):453–455.

  18. 18.

    Lu S, Taibleson M, Weiss G: Spaces Generated by Blocks. Beijing Normal University Press, Beijing; 1989.

  19. 19.

    Lu SZ, Zhang Y: Criterion on-boundedness for a class of oscillatory singular integrals with rough kernels. Revista Matemática Iberoamericana 1992,8(2):201–219.

  20. 20.

    Mizuhara T: Boundedness of some classical operators on generalized Morrey spaces. In Harmonic Analysis (Sendai, 1990), ICM-90 Satell. Conference Proceedings. Edited by: Igari S. Springer, Tokyo; 1991:183–189.

  21. 21.

    Morrey CB Jr.: On the solutions of quasi-linear elliptic partial differential equations. Transactions of the American Mathematical Society 1938,43(1):126–166. 10.1090/S0002-9947-1938-1501936-8

  22. 22.

    Pan Y: estimates for convolution operators with oscillating kernels. Mathematical Proceedings of the Cambridge Philosophical Society 1993,113(1):179–193. 10.1017/S0305004100075873

  23. 23.

    Ricci F, Stein EM: Harmonic analysis on nilpotent groups and singular integrals. I. Oscillatory integrals. Journal of Functional Analysis 1987,73(1):179–194. 10.1016/0022-1236(87)90064-4

  24. 24.

    Sjölin P: Convolution with oscillating kernels. Indiana University Mathematics Journal 1981,30(1):47–55. 10.1512/iumj.1981.30.30004

  25. 25.

    Stein EM: On the functions of Littlewood-Paley, Lusin, and Marcinkiewicz. Transactions of the American Mathematical Society 1958,88(2):430–466. 10.1090/S0002-9947-1958-0112932-2

  26. 26.

    Stein EM: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series. Volume 43. Princeton University Press, New Jersey; 1993:xiv+695.

  27. 27.

    Yano S: Notes on Fourier analysis. XXIX. An extrapolation theorem. Journal of the Mathematical Society of Japan 1951, 3: 296–305. 10.2969/jmsj/00320296

Download references

Author information

Correspondence to Ahmad Al-Salman.

Rights and permissions

Reprints and Permissions

About this article


  • Unify Approach
  • Maximal Function
  • Block Space