Skip to main content

Inequalities for dual affine quermassintegrals


For star bodies, the dual affine quermassintegrals were introduced and studied in several papers. The aim of this paper is to study them further. In this paper, some inequalities for dual affine quermassintegrals are established, such as the Minkowski inequality, the dual Brunn-Minkowski inequality, and the Blaschke-Santaló inequality.



  1. Bonnesen T, Fenchel W: Theorie der konvexen Körper. Springer, Berlin; 1934.

    Book  MATH  Google Scholar 

  2. Federer H: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften. Volume 153. Springer, New York; 1969:xiv+676.

    Google Scholar 

  3. Gardner RJ: Geometric Tomography, Encyclopedia of Mathematics and Its Applications. Volume 58. Cambridge University Press, Cambridge; 1995:xvi+424.

    Google Scholar 

  4. Grinberg EL: Isoperimetric inequalities and identities for-dimensional cross-sections of a convex bodies. London Mathematical Society 1990, 22: 478–484. 10.1112/blms/22.5.478

    Article  MATH  MathSciNet  Google Scholar 

  5. Leichtweiss K: Konvexe Mengen. Springer, Berlin; 1980:330 pp. (loose errata).

    Book  Google Scholar 

  6. Lutwak E: Dual mixed volumes. Pacific Journal of Mathematics 1975,58(2):531–538.

    Article  MATH  MathSciNet  Google Scholar 

  7. Lutwak E: A general isepiphanic inequality. Proceedings of the American Mathematical Society 1984,90(3):415–421. 10.1090/S0002-9939-1984-0728360-3

    Article  MATH  MathSciNet  Google Scholar 

  8. Lutwak E: Inequalities for Hadwiger's harmonic quermassintegrals. Mathematische Annalen 1988,280(1):165–175. 10.1007/BF01474188

    Article  MATH  MathSciNet  Google Scholar 

  9. Santaló LA: Integral Geometry and Geometric Probability, Encyclopedia of Mathematics and Its Applications. Volume 1. Addison-Wesley, Massachusetts; 1976:xvii+404.

    Google Scholar 

  10. Schneider R: Convex Bodies: the Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications. Volume 44. Cambridge University Press, Cambridge; 1993:xiv+490.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yuan Jun.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Jun, Y., Gangsong, L. Inequalities for dual affine quermassintegrals. J Inequal Appl 2006, 50181 (2006).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: