- Research Article
- Open Access
- Published:
The optimization for the inequalities of power means
Journal of Inequalities and Applications volume 2006, Article number: 46782 (2006)
Abstract
Let be the
th power mean of a sequence
of positive real numbers, where
, and
. In this paper, we will state the important background and meaning of the inequality
; a necessary and sufficient condition and another interesting sufficient condition that the foregoing inequality holds are obtained; an open problem posed by Wang et al. in 2004 is solved and generalized; a rulable criterion of the semipositivity of homogeneous symmetrical polynomial is also obtained. Our methods used are the procedure of descending dimension and theory of majorization; and apply techniques of mathematical analysis and permanents in algebra.
References
Bullen PS, Mitrinović DS, Vasić PM: Means and Their Inequalities, Mathematics and Its Applications (East European Series). Volume 31. D. Reidel, Dordrecht; 1988:xx+459.
Department of Mathematics and Mechanics of Beijing University : Higher Algebra. People's Education Press, Beijing; 1978.
Gardner RJ: The Brunn-Minkowski inequality. Bulletin of the American Mathematical Society. New Series 2002,39(3):355–405. 10.1090/S0273-0979-02-00941-2
Guan K: Schur-convexity of the complete elementary symmetric function. Journal of Inequalities and Applications 2006, 2006: 9 pages.
Kuang JC: Applied Inequalities. Hunan Education Press, Changsha; 2004.
Lai L, Wen JJ: Generalization for Hardy's inequality of convex function. Journal of Southwest University for Nationalities (Natural Science Edition) 2003,29(3):269–274.
Leng G, Zhao C, He B, Li X: Inequalities for polars of mixed projection bodies. Science in China. Series A. Mathematics 2004,47(2):175–186.
Lin TP: The power mean and the logarithmic mean. The American Mathematical Monthly 1974,81(8):879–883. 10.2307/2319447
Liu Z: Comparison of some means. Journal of Mathematical Research and Exposition 2002,22(4):583–588.
Macdonald IG: Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs. 2nd edition. The Clarendon Press, Oxford University Press, New York; 1995:x+475.
Marshall AW, Olkin I: Inequalities: Theory of Majorization and Its Applications, Mathematics in Science and Engineering. Volume 143. Academic Press, New York; 1979:xx+569.
Minc H: Permanents. Addison-Wesley, Massachusetts; 1988.
Mitrinović DS, Pečarić JE, Fink AM: Classical and New Inequalities in Analysis, Mathematics and Its Applications (East European Series). Volume 61. Kluwer Academic, Dordrecht; 1993:xviii+740.
Pečarić JE, Svrtan D: New refinements of the Jensen inequalities based on samples with repetitions. Journal of Mathematical Analysis and Applications 1998,222(2):365–373. 10.1006/jmaa.1997.5839
Timofte V: On the positivity of symmetric polynomial functions. I. General results. Journal of Mathematical Analysis and Applications 2003,284(1):174–190. 10.1016/S0022-247X(03)00301-9
Wang BY: An Introduction to the Theory of Majorizations. Beijing Normal University Press, Beijing; 1990.
Wang ZL, Wang XH: Quadrature formula and analytic inequalities-on the separation of power means by logarithmic mean. Journal of Hangzhou University 1982,9(2):156–159.
Wang W-L, Wang PF: A class of inequalities for the symmetric functions. Acta Mathematica Sinica 1984,27(4):485–497.
Wang W-L, Wen JJ, Shi HN: Optimal inequalities involving power means. Acta Mathematica Sinica 2004,47(6):1053–1062.
Wei Z, Qi L, Birge JR: A new method for nonsmooth convex optimization. Journal of Inequalities and Applications 1998,2(2):157–179. 10.1155/S1025583498000101
Wen JJ: The optimal generalization of A-G-H inequalities and its applications. Journal of Shaanxi Normal University 2004, 12–16.
Wen JJ: Hardy means and their inequalities. to appear in Journal of Mathematics to appear in Journal of Mathematics
Wen JJ, Wang W-L, Lu YJ: The method of descending dimension for establishing inequalities. Journal of Southwest University for Nationalities 2003,29(5):527–532.
Wen JJ, Xiao CJ, Zhang RX: Chebyshev's inequality for a class of homogeneous and symmetric polynomials. Journal of Mathematics 2003,23(4):431–436.
Wen JJ, Zhang RX, Zhang Y: Inequalities involving the means of variance and their applications. Journal of Sichuan University. Natural Science Edition 2003,40(6):1011–1018.
Zheng WX, Wang SW: An Introduction to Real and Functional Analysis (no.2). People's Education Press, Shanghai; 1980.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Wen, J., Wang, WL. The optimization for the inequalities of power means. J Inequal Appl 2006, 46782 (2006). https://doi.org/10.1155/JIA/2006/46782
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/JIA/2006/46782
Keywords
- Real Number
- Open Problem
- Mathematical Analysis
- Positive Real Number
- Symmetrical Polynomial