Skip to main content

A new system of generalized nonlinear relaxed cocoercive variational inequalities

Abstract

We introduce and study a new system of generalized nonlinear relaxed cocoercive inequality problems and construct an iterative algorithm for approximating the solutions of the system of generalized relaxed cocoercive variational inequalities in Hilbert spaces. We prove the existence of the solutions for the system of generalized relaxed cocoercive variational inequality problems and the convergence of iterative sequences generated by the algorithm. We also study the convergence and stability of a new perturbed iterative algorithm for approximating the solution.

[123456789101112131415161718]

References

  1. 1.

    Agarwal RP, Cho YJ, Li J, Huang NJ: Stability of iterative procedures with errors approximating common fixed points for a couple of quasi-contractive mappings in-uniformly smooth Banach spaces. Journal of Mathematical Analysis and Applications 2002,272(2):435–447. 10.1016/S0022-247X(02)00150-6

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Agarwal RP, Huang NJ, Cho YJ: Generalized nonlinear mixed implicit quasi-variational inclusions with set-valued mappings. Journal of Inequalities and Applications 2002,7(6):807–828. 10.1155/S1025583402000425

    MATH  MathSciNet  Google Scholar 

  3. 3.

    Agarwal RP, Huang NJ, Tan MY: Sensitivity analysis for a new system of generalized nonlinear mixed quasi-variational inclusions. Applied Mathematics Letters 2004,17(3):345–352. 10.1016/S0893-9659(04)90073-0

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Baiocchi C, Capelo A: Variational and Quasivariational Inequalities, Application to Free Boundary Problems, A Wiley-Interscience Publication. John Wiley & Sons, New York; 1984:ix+452.

    Google Scholar 

  5. 5.

    Chen JY, Wong NC, Yao JC: Algorithm for generalized co-complementarity problems in Banach spaces. Computers & Mathematics with Applications 2002,43(1–2):49–54. 10.1016/S0898-1221(01)00270-X

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Cho YJ, Fang YP, Huang NJ, Hwang HJ: Algorithms for systems of nonlinear variational inequalities. Journal of the Korean Mathematical Society 2004,41(3):489–499.

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Fang YP, Huang NJ: Variational-like inequalities with generalized monotone mappings in Banach spaces. Journal of Optimization Theory and Applications 2003,118(2):327–338. 10.1023/A:1025499305742

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Fang YP, Huang NJ: Existence results for systems of strongly implicit vector variationa inequalities. Acta Mathematica Hungarica 2004,103(4):265–277.

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Huang NJ: On the generalized implicit quasivariational inequalities. Journal of Mathematical Analysis and Applications 1997,216(1):197–210. 10.1006/jmaa.1997.5671

    MATH  MathSciNet  Article  Google Scholar 

  10. 10.

    Huang NJ, Bai MR, Cho YJ, Kang SM: Generalized nonlinear mixed quasi-variational inequalities. Computers & Mathematics with Applications 2000,40(2–3):205–215. 10.1016/S0898-1221(00)00154-1

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    Jou CR, Yao JC: Algorithm for generalized multivalued variational inequalities in Hilbert spaces. Computers & Mathematics with Applications 1993,25(9):7–16. 10.1016/0898-1221(93)90127-H

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    Kassay G, Kolumbán J: System of multi-valued variational inequalities. Publicationes Mathematicae Debrecen 2000,56(1–2):185–195.

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Kassay G, Kolumbán J, Páles Z: Factorization of Minty and Stampacchia variational inequality systems. European Journal of Operational Research 2002,143(2):377–389. 10.1016/S0377-2217(02)00290-4

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Kim JK, Kim DS: A new system of generalized nonlinear mixed variational inequalities in Hilbert spaces. Journal of Convex Analysis 2004,11(1):235–243.

    MATH  MathSciNet  Google Scholar 

  15. 15.

    Verma RU: Projection methods, algorithms, and a new system of nonlinear variational inequalities. Computers & Mathematics with Applications 2001,41(7–8):1025–1031. 10.1016/S0898-1221(00)00336-9

    MATH  MathSciNet  Article  Google Scholar 

  16. 16.

    Verma RU: Generalized system for relaxed coercive variational inequalities and projection methods. Journal of Optimization Theory and Applications 2004, 121: 203–210.

    MATH  MathSciNet  Article  Google Scholar 

  17. 17.

    Weng X: Fixed point iteration for local strictly pseudo-contractive mapping. Proceedings of the American Mathematical Society 1991,113(3):727–731. 10.1090/S0002-9939-1991-1086345-8

    MATH  MathSciNet  Article  Google Scholar 

  18. 18.

    Zhou SZ: Perturbation for elliptic variational inequalities. Science in China (Scientia Sinica). Series A 1991,34(6):650–659.

    MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ke Ding.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ding, K., Yan, WY. & Huang, NJ. A new system of generalized nonlinear relaxed cocoercive variational inequalities. J Inequal Appl 2006, 40591 (2006). https://doi.org/10.1155/JIA/2006/40591

Download citation

Keywords

  • Hilbert Space
  • Variational Inequality
  • Iterative Algorithm
  • Inequality Problem
  • Variational Inequality Problem
\