Skip to main content

Eigenvalues of the-Laplacian and disconjugacy criteria

Abstract

We derive oscillation and nonoscillation criteria for the one-dimensional-Laplacian in terms of an eigenvalue inequality for a mixed problem. We generalize the results obtained in the linear case by Nehari and Willett, and the proof is based on a Picone-type identity.

[123456789101112131415161718192021222324]

References

  1. 1.

    Allegretto W, Huang YX: A Picone's identity for the-Laplacian and applications. Nonlinear Analysis. Theory, Methods & Applications 1998,32(7):819–830. 10.1016/S0362-546X(97)00530-0

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Anane A, Chakrone O, Moussa M: Spectrum of one dimensional-Laplacian operator with indefinite weight. Electronic Journal of Qualitative Theory of Differential Equations 2002,2002(17):1–11.

    MathSciNet  MATH  Google Scholar 

  3. 3.

    Barrett JH: Oscillation theory of ordinary linear differential equations. Advances in Mathematics 1969,3(4):415–509. 10.1016/0001-8708(69)90008-5

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Browder FE: Infinite dimensional manifolds and non-linear elliptic eigenvalue problems. Annals of Mathematics. Second Series 1965,82(3):459–477. 10.2307/1970708

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Coppel WA: Disconjugacy, Lecture Notes in Mathematics. Volume 220. Springer, Berlin; 1971:iv+148.

    Google Scholar 

  6. 6.

    del Pino M, Elgueta M, Manásevich R: Generalizing Hartman's oscillation result for. Houston Journal of Mathematics 1991,17(1):63–70.

    MATH  MathSciNet  Google Scholar 

  7. 7.

    del Pino M, Manásevich R: Oscillation and nonoscillation for. Houston Journal of Mathematics 1988,14(2):173–177.

    MATH  MathSciNet  Google Scholar 

  8. 8.

    Došlý O: Qualitative theory of half-linear second order differential equations. Mathematica Bohemica 2002,127(2):181–195.

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Došlý O, Peña S: A linearization method in oscillation theory of half-linear second-order differential equations. Journal of Inequalities and Applications 2005,2005(5):535–545. 10.1155/JIA.2005.535

    MATH  MathSciNet  Google Scholar 

  10. 10.

    Došlý O, Řehák P: Half-Linear Differential Equations. Elsevier, Amsterdam; 2005.

    Google Scholar 

  11. 11.

    Elbert Á: Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations. In Ordinary and Partial Differential Equations (Dundee, 1982), Lecture Notes in Math.. Volume 964. Springer, Berlin; 1982:187–212.

    Google Scholar 

  12. 12.

    Fučík S, Nečas J: Ljusternik-Schnirelmann theorem and nonlinear eigenvalue problems. Mathematische Nachrichten 1972, 53: 277–289. 10.1002/mana.19720530123

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Jaroš J, Takaŝi K, Yoshida N: Picone-type inequalities for nonlinear elliptic equations and their applications. Journal of Inequalities and Applications 2001,6(4):387–404. 10.1155/S1025583401000236

    MATH  MathSciNet  Google Scholar 

  14. 14.

    Kim W: Disconjugacy and comparison theorems for second order linear systems. SIAM Journal on Mathematical Analysis 2002, 354: 4751–4767.

    Google Scholar 

  15. 15.

    Liapounov A: Problème Général de la Stabilité du Mouvement, Annals of Mathematics Studies. Volume 17. Princeton University Press, New Jersey; 1949. reprinted from Annales de la Faculté des Sciences de Toulouse 9 (1907), 203–474, translation of original paper published in Communications of the Society of Mathematics, Kharkow (1892) reprinted from Annales de la Faculté des Sciences de Toulouse 9 (1907), 203–474, translation of original paper published in Communications of the Society of Mathematics, Kharkow (1892)

    Google Scholar 

  16. 16.

    Mirzov JD: On some analogs of Sturm's and Kneser's theorems for nonlinear systems. Journal of Mathematical Analysis and Applications 1976,53(2):418–425. 10.1016/0022-247X(76)90120-7

    MATH  MathSciNet  Article  Google Scholar 

  17. 17.

    Nehari Z: Oscillation criteria for second-order linear differential equations. Transactions of the American Mathematical Society 1957,85(2):428–445. 10.1090/S0002-9947-1957-0087816-8

    MATH  MathSciNet  Article  Google Scholar 

  18. 18.

    Pinasco JP: Lower bounds for eigenvalues of the one-dimensional-Laplacian. Abstract and Applied Analysis 2004,2004(2):147–153. 10.1155/S108533750431002X

    MATH  MathSciNet  Article  Google Scholar 

  19. 19.

    Riddell RC: Nonlinear eigenvalue problems and spherical fibrations of Banach spaces. Journal of Functional Analysis 1975,18(3):213–270. 10.1016/0022-1236(75)90015-4

    MATH  MathSciNet  Article  Google Scholar 

  20. 20.

    Shere KD: Nonoscillation of second-order, linear differential equations with retarded argument. Journal of Mathematical Analysis and Applications 1973,41(2):293–299. 10.1016/0022-247X(73)90203-5

    MATH  MathSciNet  Article  Google Scholar 

  21. 21.

    Takaŝi K, Naito M: On the number of zeros of nonoscillatory solutions to half-linear ordinary differential equations involving a parameter. Transactions of the American Mathematical Society 2002,354(12):4751–4767. 10.1090/S0002-9947-02-03079-9

    MATH  MathSciNet  Article  Google Scholar 

  22. 22.

    Walter W: Sturm-Liouville theory for the radial-operator. Mathematische Zeitschrift 1998,227(1):175–185. 10.1007/PL00004362

    MATH  MathSciNet  Article  Google Scholar 

  23. 23.

    Willett D: Classification of second order linear differential equations with respect to oscillation. Advances in Mathematics 1969,3(4):594–623. 10.1016/0001-8708(69)90011-5

    MATH  MathSciNet  Article  Google Scholar 

  24. 24.

    Yoshida N: Nonoscillation of elliptic differential equations of second order. Hiroshima Mathematical Journal 1974, 4: 279–284.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juan P. Pinasco.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

De Napoli, P.L., Pinasco, J.P. Eigenvalues of the-Laplacian and disconjugacy criteria. J Inequal Appl 2006, 37191 (2006). https://doi.org/10.1155/JIA/2006/37191

Download citation

Keywords

  • Linear Case
  • Mixed Problem
  • Eigenvalue Inequality
  • Nonoscillation Criterion
\