Skip to main content

Extensions of the results on powers of -hyponormal and -hyponormal operators

Abstract

Firstly, we will show the following extension of the results on powers of-hyponormal and-hyponormal operators: let and be positive integers, if is-hyponormal for, then: (i) in case, and hold, (ii) in case, and hold. Secondly, we will show an estimation on powers of-hyponormal operators for which implies the best possibility of our results. Lastly, we will show a parallel estimation on powers of-hyponormal operators as follows: let, then the following hold for each positive integer and: (i) there exists a log-hyponormal operator such that , (ii) there exists a-hyponormal operator such that.

[1234567891011121314]

References

  1. 1.

    Aluthge A, Wang D: Powers of-hyponormal operators. Journal of Inequalities and Applications 1999,3(3):279–284. 10.1155/S1025583499000181

    MATH  MathSciNet  Google Scholar 

  2. 2.

    Fujii M, Furuta T, Kamei E: Furuta's inequality and its application to Ando's theorem. Linear Algebra and its Applications 1993, 179: 161–169.

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Furuta T: assuresforwith. Proceedings of the American Mathematical Society 1987,101(1):85–88.

    MATH  MathSciNet  Google Scholar 

  4. 4.

    Furuta T: Applications of order preserving operator inequalities. In Operator Theory and Complex Analysis (Sapporo, 1991), Oper. Theory Adv. Appl.. Volume 59. Birkhäuser, Basel; 1992:180–190.

    Google Scholar 

  5. 5.

    Furuta T: Extension of the Furuta inequality and Ando-Hiai log-majorization. Linear Algebra and its Applications 1995, 219: 139–155.

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Furuta T, Yanagida M: On powers of-hyponormal and log-hyponormal operators. Journal of Inequalities and Applications 2000,5(4):367–380. 10.1155/S1025583400000199

    MATH  MathSciNet  Google Scholar 

  7. 7.

    Heinz E: Beiträge zur Störungstheorie der Spektralzerlegung. Mathematische Annalen 1951, 123: 415–438. 10.1007/BF02054965

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Ito M: Generalizations of the results on powers of-hyponormal operators. Journal of Inequalities and Applications 2001,6(1):1–15. 10.1155/S1025583401000017

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Kamei E: A satellite to Furuta's inequality. Mathematica Japonica 1988,33(6):883–886.

    MATH  MathSciNet  Google Scholar 

  10. 10.

    Löwner K: Über monotone Matrixfunktionen. Mathematische Zeitschrift 1934,38(1):177–216. 10.1007/BF01170633

    MathSciNet  Article  Google Scholar 

  11. 11.

    Tanahashi K: Best possibility of the Furuta inequality. Proceedings of the American Mathematical Society 1996,124(1):141–146. 10.1090/S0002-9939-96-03055-9

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    Tanahashi K: The best possibility of the grand Furuta inequality. Proceedings of the American Mathematical Society 2000,128(2):511–519. 10.1090/S0002-9939-99-05261-2

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Yamazaki T: Extensions of the results on-hyponormal and log-hyponormal operators by Aluthge and Wang. SUT Journal of Mathematics 1999,35(1):139–148.

    MATH  MathSciNet  Google Scholar 

  14. 14.

    Yanagida M: Some applications of Tanahashi's result on the best possibility of Furuta inequality. Mathematical Inequalities & Applications 1999,2(2):297–305.

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Changsen Yang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, C., Yuan, J. Extensions of the results on powers of -hyponormal and -hyponormal operators. J Inequal Appl 2006, 36919 (2006). https://doi.org/10.1155/JIA/2006/36919

Download citation

Keywords

  • Positive Integer
  • Parallel Estimation
  • Good Possibility
  • Hyponormal Operator
\