Skip to main content

Applications of the poincaré inequality to extended Kantorovich method

Abstract

We apply the Poincaré inequality to study the extended Kantorovich method that was used to construct a closed-form solution for two coupled partial differential equations with mixed boundary conditions.

[123456789101112]

References

  1. 1.

    Chang D-C, Wang G, Wereley NM: A generalized Kantorovich method and its application to free in-plane plate vibration problem. Applicable Analysis 2001,80(3–4):493–523.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Chang D-C, Wang G, Wereley NM: Analysis and applications of extended Kantorovich-Krylov method. Applicable Analysis 2003,82(7):713–740. 10.1080/0003681031000148573

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Evans LC: Partial Differential Equations, Graduate Studies in Mathematics. Volume 19. American Mathematical Society, Rhode Island; 1998:xviii+662.

    Google Scholar 

  4. 4.

    Farag NH, Pan J: Model characteristics of in-plane vibration of rectangular plates. Journal of Acoustics Society of America 1999,105(6):3295–3310. 10.1121/1.424658

    Article  Google Scholar 

  5. 5.

    John F: Partial Differential Equations, Applied Mathematical Sciences. Volume 1. 3rd edition. Springer, New York; 1978:ix+198.

    Google Scholar 

  6. 6.

    Kantorovich LV, Krylov VI: Approximate Method of Higher Analysis. Noordhoff, Groningen; 1964.

    Google Scholar 

  7. 7.

    Kerr AD: An extension of the Kantorovich method. Quarterly of Applied Mathematics 1968,26(2):219–229.

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Kerr AD, Alexander H: An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate. Acta Mechanica 1968, 6: 180–196. 10.1007/BF01170382

    Article  MATH  Google Scholar 

  9. 9.

    Lieb EH, Loss M: Analysis, Graduate Studies in Mathematics. Volume 14. American Mathematical Society, Rhode Island; 1997:xviii+278.

    Google Scholar 

  10. 10.

    Stein EM: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, no. 30. Princeton University Press, New Jersey; 1970:xiv+290.

    Google Scholar 

  11. 11.

    Wang G, Wereley NM, Chang D-C: Analysis of sandwich plates with viscoelastic damping using two-dimensional plate modes. AIAA Journal 2003,41(5):924–932. 10.2514/2.2028

    Article  Google Scholar 

  12. 12.

    Wang G, Wereley NM, Chang D-C: Analysis of bending vibration of rectangular plates Using two-dimensional plate modes. AIAA Journal of Aircraft 2005,42(2):542–550. 10.2514/1.4303

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Der-Chen Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chang, DC., Nguyen, T., Wang, G. et al. Applications of the poincaré inequality to extended Kantorovich method. J Inequal Appl 2006, 32356 (2006). https://doi.org/10.1155/JIA/2006/32356

Download citation

Keywords

  • Boundary Condition
  • Differential Equation
  • Partial Differential Equation
  • Mixed Boundary
  • Mixed Boundary Condition
\