Skip to main content

Riemann-Stieltjes operators from spaces to-Bloch spaces on the unit ball

Abstract

Let denote the space of all holomorphic functions on the unit ball. We investigate the following integral operators:,,,, where, and is the radial derivative of. The operator can be considered as an extension of the Cesàro operator on the unit disk. The boundedness of two classes of Riemann-Stieltjes operators from general function space, which includes Hardy space, Bergman space, space, BMOA space, and Bloch space, to-Bloch space in the unit ball is discussed in this paper.

[123456789101112131415161718192021]

References

  1. 1.

    Aleman A, Cima JA: An integral operator onand Hardy's inequality. Journal d'Analyse Mathématique 2001, 85: 157–176.

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Aleman A, Siskakis AG: An integral operator on. Complex Variables. Theory and Application 1995,28(2):149–158. 10.1080/17476939508814844

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Aleman A, Siskakis AG: Integration operators on Bergman spaces. Indiana University Mathematics Journal 1997,46(2):337–356.

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Hardy GH, Littlewood JE: Some properties of fractional integrals. II. Mathematische Zeitschrift 1932,34(1):403–439. 10.1007/BF01180596

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Hu ZJ: Extended Cesàro operators on mixed norm spaces. Proceedings of the American Mathematical Society 2003,131(7):2171–2179. 10.1090/S0002-9939-02-06777-1

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Hu ZJ: Extended Cesáro operators on the Bloch space in the unit ball of. Acta Mathematica Scientia. Series B. English Edition 2003,23(4):561–566.

    MATH  MathSciNet  Google Scholar 

  7. 7.

    Hu ZJ: Extended Cesàro operators on Bergman spaces. Journal of Mathematical Analysis and Applications 2004,296(2):435–454. 10.1016/j.jmaa.2004.01.045

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Miao J: The Cesàro operator is bounded onfor. Proceedings of the American Mathematical Society 1992,116(4):1077–1079.

    MATH  MathSciNet  Google Scholar 

  9. 9.

    Ouyang C, Yang W, Zhao R: Möbius invariantspaces associated with the Green's function on the unit ball of. Pacific Journal of Mathematics 1998,182(1):69–99. 10.2140/pjm.1998.182.69

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Pommerenke C: Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation. Commentarii Mathematici Helvetici 1977,52(4):591–602.

    MATH  MathSciNet  Article  Google Scholar 

  11. 11.

    Shi J-H, Ren G-B: Boundedness of the Cesàro operator on mixed norm spaces. Proceedings of the American Mathematical Society 1998,126(12):3553–3560. 10.1090/S0002-9939-98-04514-6

    MATH  MathSciNet  Article  Google Scholar 

  12. 12.

    Siskakis AG: Composition semigroups and the Cesàro operator on. Journal of the London Mathematical Society. Second Series 1987,36(1):153–164. 10.1112/jlms/s2-36.1.153

    MATH  MathSciNet  Article  Google Scholar 

  13. 13.

    Siskakis AG: The Cesàro operator is bounded on. Proceedings of the American Mathematical Society 1990,110(2):461–462.

    MATH  MathSciNet  Google Scholar 

  14. 14.

    Siskakis AG, Zhao R: A Volterra type operator on spaces of analytic functions. In Function Spaces (Edwardsville, IL, 1998), Contemp. Math.. Volume 232. American Mathematical Society, Rhode Island; 1999:299–311.

    Google Scholar 

  15. 15.

    Stević S: On an integral operator on the unit ball in. Journal of Inequalities and Applications 2005,2005(1):81–88. 10.1155/JIA.2005.81

    MATH  MathSciNet  Google Scholar 

  16. 16.

    Xiao J: Cesàro-type operators on Hardy, BMOA and Bloch spaces. Archiv der Mathematik 1997,68(5):398–406. 10.1007/s000130050072

    MATH  MathSciNet  Article  Google Scholar 

  17. 17.

    Xiao J: Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball. Journal of the London Mathematical Society. Second Series 2004,70(1):199–214. 10.1112/S0024610704005484

    MATH  MathSciNet  Article  Google Scholar 

  18. 18.

    Yoneda R: Pointwise multipliers fromto. Complex Variables. Theory and Application 2004,49(14):1045–1061.

    MATH  MathSciNet  Article  Google Scholar 

  19. 19.

    Zhang XJ: Multipliers on some holomorphic function spaces. Chinese Annals of Mathematics. Series A 2005,26(4):477–486.

    MATH  MathSciNet  Google Scholar 

  20. 20.

    Zhao R: On a general family of function spaces. Annales Academiae Scientiarum Fennicae. Mathematica. Dissertationes 1996, (105):56.

  21. 21.

    Zhu K: Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics. Volume 226. Springer, New York; 2005:x+271.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Songxiao Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, S. Riemann-Stieltjes operators from spaces to-Bloch spaces on the unit ball. J Inequal Appl 2006, 27874 (2006). https://doi.org/10.1155/JIA/2006/27874

Download citation

Keywords

  • General Function
  • Function Space
  • Integral Operator
  • Holomorphic Function
  • Unit Ball