Skip to main content

The James constant of normalized norms on

Abstract

We introduce a new class of normalized norms on which properly contains all absolute normalized norms. We also give a criterion for deciding whether a given norm in this class is uniformly nonsquare. Moreover, an estimate for the James constant is presented and the exact value of some certain norms is computed. This gives a partial answer to the question raised by Kato et al.

[12345678910]

References

  1. 1.

    Bonsall FF, Duncan J: Numerical Ranges, Vol. II. Cambridge University Press, New York; 1973.

    Google Scholar 

  2. 2.

    Day MM: Uniform convexity in factor and conjugate spaces. Annals of Mathematics. Second Series 1944,45(2):375–385. 10.2307/1969275

    MATH  MathSciNet  Article  Google Scholar 

  3. 3.

    Dhompongsa S, Kaewkhao A, Saejung S: Uniform smoothness and-convexity of-direct sums. Journal of Nonlinear and Convex Analysis 2005,6(2):327–338.

    MATH  MathSciNet  Google Scholar 

  4. 4.

    Dhompongsa S, Kaewkhao A, Tasena S: On a generalized James constant. Journal of Mathematical Analysis and Applications 2003,285(2):419–435. 10.1016/S0022-247X(03)00408-6

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Gao J, Lau K-S: On the geometry of spheres in normed linear spaces. Journal of Australian Mathematical Society. Series A 1990,48(1):101–112. 10.1017/S1446788700035230

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Hanner O: On the uniform convexity ofand. Arkiv för Matematik 1956, 3: 239–244. 10.1007/BF02589410

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    James RC: Inner product in normed linear spaces. Bulletin of the American Mathematical Society 1947, 53: 559–566. 10.1090/S0002-9904-1947-08831-5

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Kato M, Maligranda L, Takahashi Y: On James and Jordan-von Neumann constants and the normal structure coefficient of Banach spaces. Studia Mathematica 2001,144(3):275–295. 10.4064/sm144-3-5

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Mitani K-I, Saito K-S: The James constant of absolute norms on. Journal of Nonlinear and Convex Analysis 2003,4(3):399–410.

    MATH  MathSciNet  Google Scholar 

  10. 10.

    Saito K-S, Kato M, Takahashi Y: Von Neumann-Jordan constant of absolute normalized norms on. Journal of Mathematical Analysis and Applications 2000,244(2):515–532. 10.1006/jmaa.2000.6727

    MATH  MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Satit Saejung.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nilsrakoo, W., Saejung, S. The James constant of normalized norms on. J Inequal Appl 2006, 026265 (2006). https://doi.org/10.1155/JIA/2006/26265

Download citation

Keywords

  • Kato
  • Partial Answer
  • James Constant
\