Skip to main content

Differential inequalities method toth-order boundary value problems

Abstract

By the theory of differential inequality, bounding function method, and the theory of topological degree, this paper presents the existence criterions of solutions for the generalth-order differential equations under nonlinear boundary conditions, and extends many existing results.

[1234567891011121314151617]

References

  1. 1.

    Cabada A, Grossinho MdoR, Minhós F: On the solvability of some discontinuous third order nonlinear differential equations with two point boundary conditions. Journal of Mathematical Analysis and Applications 2003,285(1):174–190. 10.1016/S0022-247X(03)00388-3

    MATH  MathSciNet  Article  Google Scholar 

  2. 2.

    Chang KW, Howes FA: Nonlinear Singular Perturbation Phenomena: Theory and Applications, Applied Mathematical Sciences. Volume 56. Springer, New York; 1984:viii+180.

    Google Scholar 

  3. 3.

    Du Z, Ge W, Lin X: Existence of solutions for a class of third-order nonlinear boundary value problems. Journal of Mathematical Analysis and Applications 2004,294(1):104–112. 10.1016/j.jmaa.2004.02.001

    MATH  MathSciNet  Article  Google Scholar 

  4. 4.

    Ehme J, Eloe PW, Henderson J: Upper and lower solution methods for fully nonlinear boundary value problems. Journal of Differential Equations 2002,180(1):51–64. 10.1006/jdeq.2001.4056

    MATH  MathSciNet  Article  Google Scholar 

  5. 5.

    Erbe LH: Existence of solutions to boundary value problems for second order differential equations. Nonlinear Analysis 1982,6(11):1155–1162. 10.1016/0362-546X(82)90027-X

    MATH  MathSciNet  Article  Google Scholar 

  6. 6.

    Fabry Ch, Habets P: Upper and lower solutions for second-order boundary value problems with nonlinear boundary conditions. Nonlinear Analysis 1986,10(10):985–1007. 10.1016/0362-546X(86)90084-2

    MATH  MathSciNet  Article  Google Scholar 

  7. 7.

    Howes FA: Differential inequalities and applications to nonlinear singular perturbation problems. Journal of Differential Equations 1976,20(1):133–149. 10.1016/0022-0396(76)90100-5

    MATH  MathSciNet  Article  Google Scholar 

  8. 8.

    Kelley WG: Some existence theorems forth-order boundary value problems. Journal of Differential Equations 1975,18(1):158–169. 10.1016/0022-0396(75)90086-8

    MATH  MathSciNet  Article  Google Scholar 

  9. 9.

    Lin Z, Zhou M: Perturbation Methods in Applied Mathematics. Jiangsu Education Press, Nanjing; 1995.

    Google Scholar 

  10. 10.

    Nagumo M: Über die Differentialgleichung. Proceedings of the Physico-Mathematical Society of Japan 1937, 19: 861–866.

    MATH  Google Scholar 

  11. 11.

    O'Donnell MA: Semi-linear systems of boundary value problems. SIAM Journal on Mathematical Analysis 1984,15(2):316–332.

    MathSciNet  Google Scholar 

  12. 12.

    Pei MH: Nonlinear two-point boundary value problems forth-order nonlinear differential equations. Acta Mathematica Sinica 2000,43(5):921–930.

    MATH  MathSciNet  Google Scholar 

  13. 13.

    Sadyrbaev F: Nonlinear fourth-order two-point boundary value problems. The Rocky Mountain Journal of Mathematics 1995,25(2):757–781. 10.1216/rmjm/1181072248

    MATH  MathSciNet  Article  Google Scholar 

  14. 14.

    Wang G, Zhou M, Sun L: Existence of solutions of two-point boundary value problems for the systems ofth-order differential equations. Journal of Nanjing University. Mathematical Biquarterly 2002,19(1):68–79.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Yang X: The method of lower and upper solutions for systems of boundary value problems. Applied Mathematics and Computation 2003,144(1):169–172. 10.1016/S0096-3003(02)00400-9

    MATH  MathSciNet  Article  Google Scholar 

  16. 16.

    Yang X: Upper and lower solutions for periodic problems. Applied Mathematics and Computation 2003,137(2–3):413–422. 10.1016/S0096-3003(02)00147-9

    MATH  MathSciNet  Article  Google Scholar 

  17. 17.

    Zhang X: An existence theorem and estimation of the solution of the Robin problem for a class ofth order equations. Acta Mathematicae Applicatae Sinica 1991,14(3):397–403.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guangwa Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, G., Zhou, M. & Sun, L. Differential inequalities method toth-order boundary value problems. J Inequal Appl 2006, 12040 (2006). https://doi.org/10.1155/JIA/2006/12040

Download citation

Keywords

  • Boundary Condition
  • Differential Equation
  • Function Method
  • Nonlinear Boundary
  • Differential Inequality
\