- Research Article
- Open access
- Published:
A Note on Generalized
-Summability Factors for Infinite Series
Journal of Inequalities and Applications volume 2010, Article number: 814974 (2010)
Abstract
A general theorem concerning the —summability factors of infinite series has been proved.
1. Introduction
A weighted mean matrix, denoted by , is a lower triangular matrix with entries
, where
is a nonnegative sequence with
, and
.
Mishra and Srivastava [1] obtained sufficient conditions on a sequence and a sequence
for the series
to be absolutely summable by the weighted mean matrix
.
Recently Savaş and Rhoades [2] established the corresponding result for a nonnegative triangle, using the correct definition of absolute summability of order .
Let be an infinite lower triangular matrix. We may associate with
two lower triangular matrices
and
, whose entries are defined by

respectively. The motivation for these definitions will become clear as we proceed.
Let be an infinite matrix. The series
is said to be absolutely summable by
, of order
, written as
, if

where is the forward difference operator and
denotes the
term of the matrix transform of the sequence
, where
.
Thus

since .
A sequence is said to be of bounded variation
if
Let
where
denotes the set of all null sequences.
A positive sequence is said to be an almost increasing sequence if there exist an increasing sequence
and positive constants
and
such that
(see [3]). Obviously, every increasing sequence is almost increasing. However, the converse need not be true as can be seen by taking the example, say
.
A positive sequence is said to be a quasi
-power increasing sequence if there exists a constant
such that

holds for all . It should be noted that every almost increasing sequence is quasi
-power increasing sequence for any nonnegative
, but the converse need not be true as can be seen by taking an example, say
for
(see [4]). If (1.4) stays with
then
is simply called a quasi-increasing sequence. It is clear that if
is quasi
-power increasing then
is quasi-increasing.
A positive sequence is said to be a quasi-
-power increasing sequence, if there exists a constant
such that
holds for all
, where
,
,
was considered instead of
(see [5, 6]).
Given any sequence , the notation
means
and
.
Quite recently, Savaş and Rhoades [2] proved the following theorem for -summability factors of infinite series.
Theorem 1.1.
Let be a triangle with nonnegative entries satisfying
(i),
(ii) for
,
(iii),
(iv), and
(v).
If is a positive nondecreasing sequence and the sequences
and
satisfy
(vi),
(vii),
(viii),
(ix), and
(x),
then the series is summable
.
It should be noted that if is an almost increasing sequence then (viii) implies that the sequence
is bounded. However, when
is a quasi
-power increasing sequence or a quasi
-increasing sequence, (viii) does not imply
,
For example, since
is a quasi
-power increasing sequence for
if we take
,
then
,
holds but
(see [7]).
The goal of this paper is to prove a theorem by using quasi -increasing sequences. We show that the crucial condition of our proof,
can be deduced from another condition of the theorem.
2. The Main Results
We have the following theorem:
Theorem 2.1.
Let be nonnegative triangular matrix satisfying conditions (i)–(v) and let
and
be sequences satisfying conditions (vi) and (vii) of Theorem 1.1 and

If is a quasi
-increasing sequence and condition (
) and

are satisfied, then the series is summable
,
where
,
,
, and
Theorem 2.1 includes the following theorem with the special case .
Theorem 2.2.
Let satisfying conditions (i)–(v) and let
and
be sequences satisfying conditions (vi), (vii), and (2.1). If
is a quasi
-power increasing sequence for some
and conditions (
) and

are satisfied, where then the series
is summable
.
If we take that is an almost increasing sequence instead of a quasi
-power increasing sequence then our Theorem 2.2 reduces to [8, Theorem
].
Remark 2.3.
The crucial condition, and condition (viii) do not appear among the conditions of Theorems 2.1 and 2.2. By Lemma 3.3, under the conditions on
and
as taken in the statement of the Theorem 2.1, also in the statement of Theorem 2.2 with the special case
conditions
and (viii) hold.
3. Lemmas
We shall need the following lemmas for the proof of our main Theorem 2.1.
Lemma 3.1 (see [9]).
Let be a sequence of real numbers and denote

If then there exists a natural number
such that

for all
Lemma 3.2 (see [7]).
If is a quasi
-increasing sequence, where
,
,
, then conditions (2.1) of Theorem 2.1,


where imply conditions (viii) and

Lemma 3.3 (see [7]).
If is a quasi
-increasing sequence, where
,
,
then under conditions (vi), (vii), (2.1) and (2.2), conditions (viii) and (3.5) are satisfied.
Lemma 3.4 (see [7]).
Let be a quasi
-increasing sequence, where
,
,
If conditions (vi), (vii), and (2.2) are satisfied, then


4. Proof of Theorem 2.1
Let denote the
th term of the
-transform of the partial sums of the series
. Then, we have

Thus,

It is easy to see that

Also we may write

Therefore, for

To complete the proof of the theorem, it will be sufficient to show that

Using Hölder's inequality and condition (iii),

Since is bounded by Lemma 3.3, using (ii), (iii), (vi), (x), and property (3.7) of Lemma 3.4,

Now

From [2],

Thus, using (iv) and (ii),

Hence, using Hölder's inequality, (v), (iii), and the fact that the 's are bounded,

as in the proof of .
It follows from (3.6) that and hence that
by condition (vi).
Using (iii), Hölder's inequality, and (v),

Since by (x), we have

Using Abel's transformation, (vi), (2.2), and properties (3.7) and (3.6) of Lemma 3.4,

Using the boundedness of and (x),

as in the proof of .
A weighted mean matrix, written is a lower triangular matrix with entries
where
is a nonnegative sequence with
and
as
Corollary 4.1.
Let be a positive sequence satisfying
(i) and
(ii)
and let and
be sequences satisfying conditions (vi), (vii), and (2.1). If
is a quasi
-increasing sequence, where
,
and conditions (x) and (2.2) are satisfied, then the series
is summable
,
.
References
Mishra KN, Srivastava RSL: On summability factors of infinite series. Indian Journal of Pure and Applied Mathematics 1984, 15(6):651–656.
Savaş E, Rhoades BE: A note on summability factors for infinite series. Journal of Inequalities and Applications 2007, 2007:-8.
Alijancic S, Arendelovic D: -regularly varying functions. Publications de l'Institut Mathématique 1977, 22(36):5–22.
Leindler L: A new application of quasi power increasing sequences. Publicationes Mathematicae Debrecen 2001, 58(4):791–796.
Sulaiman WT: Extension on absolute summability factors of infinite series. Journal of Mathematical Analysis and Applications 2006, 322(2):1224–1230. 10.1016/j.jmaa.2005.09.019
Şevli H: General absolute summability factor theorems involving quasi-power-increasing sequences. Mathematical and Computer Modelling 2009, 50(7–8):1121–1127. 10.1016/j.mcm.2009.05.031
Savaş E, Şevli H: A recent note on quasi-power increasing sequence for generalized absolute summability. Journal of Inequalities and Applications 2009, 2009:-10.
Saxena SKr: A note on summability factors for a triangular matrix. International Journal of Mathematical Analysis 2008, 2(21–24):1103–1110.
Leindler L: A note on the absolute Riesz summability factors. Journal of Inequalities in Pure and Applied Mathematics 2005, 6(4, article 96):-5.
Acknowledgment
The author wishes to thank the referees for their careful reading of the manuscript and for their helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Savaş, E. A Note on Generalized -Summability Factors for Infinite Series.
J Inequal Appl 2010, 814974 (2010). https://doi.org/10.1155/2010/814974
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/814974