- Research Article
- Open Access
- Published:
Stability of Quadratic Functional Equations via the Fixed Point and Direct Method
Journal of Inequalities and Applications volume 2010, Article number: 635720 (2010)
Abstract
Cădariu and Radu applied the fixed point theorem to prove the stability theorem of Cauchy and Jensen functional equations. In this paper, we prove the generalized Hyers-Ulam stability via the fixed point method and investigate new theorems via direct method concerning the stability of a general quadratic functional equation.
1. Introduction
In 1940, Ulam [1] gave a talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of unsolved problems. Among these was the following question concerning the stability of homomorphisms.
Let
be a group and let
be a metric group with metric
. Given
, does there exist a
such that if
satisfies
for all
, then a homomorphism
exists with
for all
?
The concept of stability for functional equations arises when we replace the functional equation by an inequality which acts as a perturbation of the equation. Thus we say that a functional equation is stable if any mapping
approximately satisfying the equation
is near to a true solution
such that
and
for some function
depending on the given function
In 1941, the first result concerning the stability of functional equations for the case where
and
are Banach spaces was presented by Hyers [2]. In fact, he proved that each solution
of the inequality
for all
can be approximated by a unique additive function
defined by
such that
for every
. Moreover, if
is continuous in
for each fixed
, then the function
is linear. And then Aoki [3], Bourgin [4], and Forti [5] have investigated the stability theorems of functional equations which generalize the Hyers' result. In 1978, Rassias [6] attempted to weaken the condition for the bound of Cauchy difference controlled by a sum of unbounded function
and provided a generalization of Hyers' theorem. In 1991, Gajda [7] gave an affirmative solution to this question for
by following the same approach as in [6]. Rassias [8] established a similar stability theorem for the unbounded Cauchy difference controlled by a product of unbounded function
. G
vruţa [9] provided a further generalization of Rassias' theorem by replacing the bound of Cauchy difference by a general control function. During the last two decades a number of papers and research monographs have been published on various generalizations and applications of the generalized Hyers-Ulam stability to a number of functional equations and mappings (see [10–15]).
Let and
be real vector spaces. A function
is called a quadratic function if and only if
is a solution function of the quadratic functional equation

for all It is well known that a function
between real vector spaces is quadratic if and only if there exists a unique symmetric biadditive function
such that
for all
, where the mapping
is given by
. See [16, 17] for the details.
The Hyers-Ulam stability of the quadratic functional equation (1.1) was first proved by Skof [18] for functions , where
is a normed space and
is a Banach space. Cholewa noticed that Skof's theorem is also valid if
is replaced by an Abelian group. Czerwik [19] proved the generalized Hyers-Ulam stability of quadratic functional equation (1.1) in the spirit of Rassias approach. On the other hand, according to the theorem of Borelli and Forti [20], we know the following generalization of stability theorem for quadratic functional equation. Let
be a 2-divisible Abelian group and
a Banach space, and let
be a mapping with
satisfying the inequality

for all . Assume that one of the series

holds for all , then there exists a unique quadratic function
such that

for all . The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem [21–27].
In 1996, Isac and Rassias [28] applied the stability theory of functional equations to prove fixed point theorems and study some new applications in nonlinear analysis.Radu [29], Cãdariu and Radu [30, 31] applied the fixed point theorem of alternative to the investigation of Cauchy and Jensen functional equations. Recently, Jung et al. [32],Jung [33, 34],Jung and Lee [35],Jung and Min [36],Jung and Rassias [37] have obtained the generalized Hyers-Ulam stability of functional equations via the fixed point method.
Now, we see that the norm defined by a real inner product space satisfies the following equality:

for all vectors Thus employing the last equality, we introduce to consider the following functional equation

with several variables for any fixed with
. It is obvious that if
in (1.6), then the solution function is even and thus it reduces to (1.1). Conversely, we observe that the general solution of (1.6) in the class of all functions between vector spaces is exactly a quadratic function. In this paper, we are going to investigate the general solution of (1.6) and then we are to prove the generalized Hyers-Ulam stability of (1.6) for a large class of functions from vector spaces into complete
-normed spaces by using fixed point method, and direct method.
2. Stability of (1.6) by Fixed Point Method
For notational convenience, given a mapping , we define the difference operator
of (1.6) by

for all , which is called the approximate remainder of the functional equation (1.6) and acts as a perturbation of the equation.
We now introduce a fundamental result of fixed point theory. We refer to [38] for the proof of it. For an extensive theory of fixed point theorems and other nonlinear methods, the reader is referred to the book of Hyers et al. [39].
Theorem.
Let be a generalized complete metric space (i.e.,
may assume infinite values). Assume that
is a strictly contractive operator, that is, there exists a Lipschitz constant
with
such that
for all
Then for a given element
one of the following assertions is true:
for all
;
there exists a nonnegative integer such that
for all
;
the sequence converges to a fixed point
of
;
is the unique fixed point of
in
for all
Throughout this paper, we consider a -Banach space. Let
be a real number with
and let
denote either real field
or complex field
. Suppose
is a vector space over
. A function
is called a
-norm if and only if it satisfies
, if and only if
;
, for all
and all
;
, for all
A -Banach space is a
-normed space which is complete with respect to the
-norm. Now we are ready to investigate the generalized Hyers-Ulam stability problem for the functional equation (1.6) using the fixed point method. From now on, let X be a linear space and let Y be a
-Banach space over
unless we give any specific reference where
is a fixed real number with
Theorem 2.2.
Let be a function with
for which there exists a function
such that there exists a constant
satisfying the inequalities


for all . Then there exists a unique quadratic function
defined by
such that

for all
Proof.
Let us define to be the set of all functions
and introduce a generalized metric
on
as follows:

Then it is easy to show that is complete (see the proof of Theorem
of [35]). Now we define an operator
by

for all First, we assert that
is strictly contractive with constant
on
. Given
, let
be an arbitrary constant with
that is,
Then it follows from (2.3) that

for all that is,
Thus we see that
for any
and so
is strictly contractive with constant
on
.
Next, if we put in (2.2) and we divide both sides by
, then we get

for all which implies
Thus applying Theorem 2.1 to the complete generalized metric space with contractive constant
, we see from Theorem 2.1
that there exists a function
which is a fixed point of
, that is,
such that
as
By mathematical induction we know that

for all Since
as
there exists a sequence
such that
as
and
for every
Hence, it follows from the definition of
that

for all This implies

for all By Theorem 2.1
we obtain

which yields inequality (2.4).
In turn, it follows from (2.2) and (2.3) that

for all , which implies that
is a solution of (1.6) and so the mapping
is quadratic.
To prove the uniqueness of , assume now that
is another quadratic mapping satisfying inequality (2.4). Then
is a fixed point of
and
Since the mapping
is a unique fixed point of
in the set
we see that
by Theorem 2.1
The proof is complete.
The following theorem is an alternative result of Theorem 2.2.
Theorem.
Let be a function with
for which there exists a function
such that there exists a constant
satisfying the inequalities


for all . Then there exists a unique quadratic function
defined by
such that

for all
Proof.
We use the same notations for and
as in the proof of Theorem 2.2. Thus
is a complete generalized metric space. Let us define an operator
by

for all
Then it follows from (2.15) that

for all that is,
Thus we see that
for any
and so
is strictly contractive with constant
on
.
Next, if we put in (2.14) and we multiply both sides by
, then we get by virtue of (2.15)

for all which implies
Thus according to of Theorem 2.1, there exists a function
which is a fixed point of
, that is,
such that

By Theorem 2.1 we obtain

which yields the inequality (2.16).
Replacing instead of
in the last part of Theorem 2.2, we can prove that
is a unique quadratic function satisfying (2.16) for all
As applications, one has the following corollaries concerning the stability of (1.6).
Corollary.
Let be a real number with
. Assume that a function
with
satisfies the inequality

for all . Then there exists a unique quadratic function
given by
which satisfies the inequality

for all .
Proof.
Letting and then applying Theorem 2.2 with contractive constant
, we obtain easily the result.
Corollary.
Let be an
-normed space with
and
a
-Banach space, respectively. Let
be real numbers such that
for all
and let
be real numbers such that either
or
. Assume that a function
with
satisfies the inequality

for all and
if
. Then there exists a unique quadratic function
which satisfies the inequality

for all and
if
. The function
is given by

for all .
Proof.
Letting for all
and then applying Theorem 2.2 with contractive constant
and Theorem 2.3 with contractive constant
, we obtain easily the results.
3. Stability of (1.6) by Direct Method
In the next two theorems, let be a mapping satisfying one of the conditions


for all .
Theorem.
Assume that a function satisfies

for all and
satisfies the condition (3.1). Then there exists a unique quadratic function
satisfying

for all , where
. The function
is given by

for all
Proof.
Putting in (3.3), we get
. Putting
in (3.3), we obtain

for . Dividing (3.6) by
, we get

where for any
. Thus it follows from formula (3.7) and triangle inequality that

for all and all
which is verified by induction. Therefore we prove from inequality (3.8) that for any integers
with

for all . Since the right-hand side of (3.9) tends to zero as
, the sequence
is a Cauchy sequence for all
and thus converges by the completeness of
. Define
by

Taking the limit in (3.8) as , we obtain that

for all . Letting
for all
in (3.3), respectively, and dividing both sides by
and after then taking the limit in the resulting inequality, we have

so the function is quadratic.
To prove the uniqueness of the quadratic function subject to (3.4), let us assume that there exists a quadratic function
which satisfies (1.6) and inequality (3.4). Obviously, we obtain that

for all . Hence it follows from (3.4) that

for all . Therefore letting
, one has
for all
, completing the proof of uniqueness.
Theorem.
Assume that a function satisfies

for all and
satisfies condition (3.2). Then there exists a unique quadratic function
satisfying

for all . The function Q is given by

for all
Proof.
In this case, since
and so
by assumption. Replacing
by
in (3.6), we obtain

for .
Therefore we prove from inequality (3.18) that for any integers with

for all . Since the right-hand side of (3.19) tends to zero as
, the sequence
is a Cauchy sequence for all
, and thus converges by the completeness of
. Define
by

for all . Taking the limit in (3.19) with
as
, we obtain that

Replacing in (3.3) by
, multiplying both sides by
and then taking the limit as
in the resulting inequality, we have

for all . Therefore the function
is quadratic.
To prove the uniqueness, let be another quadratic function satisfying (3.16). Then it is easy to see that the following identities
and
hold for all
. Thus we have

for all and all
. Therefore letting
, one has
for all
. This completes the proof.
In the following corollary, we have a stability result of (1.6) with difference operator bounded by the sum of powers of
-norms.
Corollary.
Let be an
-normed space with
and
a
-Banach space, respectively. Let
be real numbers with
for all
, and let
be real numbers such that either
or
. Assume that a function
satisfies the inequality

for all and
if
. Then there exists a unique quadratic function
which satisfies the inequality

for all and
if
. The function
is given by

for all .
Proof.
Letting for all
and then applying Theorems 3.1 and 3.2, we obtain easily the results.
We observe that if and
in Corollary 3.3, then the stability result obtained by the fixed point method in Corollary 2.5 is somewhat different from the stability result obtained by direct method in Corollary 3.3. The stability result in Corollary 3.3 is sharper than that of Corollary 2.5.
In the next corollary, we get a stability result of (1.6) with difference operator bounded by the product of powers of
-norms.
Corollary.
Let be an
-normed space with
and
a
-Banach space, respectively, and let
be real numbers such that
and
, where
. Suppose that a function
satisfies

for all and
if
. Then there exists a unique quadratic function
which satisfies the inequality

for all and for all
if
, where
if
.
Proof.
We remark that satisfies condition (3.1) for the case
or condition (3.2) for the case
. By Theorems 3.1 and 3.2, we get the results.
We observe that if in Corollary 3.4, then the stability result obtained by the fixed point method with contractive constants
respectively, coincides with the stability result (3.28) obtained by direct method.
References
Ulam SM: A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8. Interscience, New York, NY, USA; 1960:xiii+150.
Hyers DH: On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America 1941, 27: 222–224. 10.1073/pnas.27.4.222
Aoki T: On the stability of the linear transformation in Banach spaces. Journal of the Mathematical Society of Japan 1950, 2: 64–66. 10.2969/jmsj/00210064
Bourgin DG: Classes of transformations and bordering transformations. Bulletin of the American Mathematical Society 1951, 57: 223–237. 10.1090/S0002-9904-1951-09511-7
Forti GL: An existence and stability theorem for a class of functional equations. Stochastica 1980, 4(1):23–30. 10.1080/17442508008833155
Rassias ThM: On the stability of the linear mapping in Banach spaces. Proceedings of the American Mathematical Society 1978, 72(2):297–300. 10.1090/S0002-9939-1978-0507327-1
Gajda Z: On stability of additive mappings. International Journal of Mathematics and Mathematical Sciences 1991, 14(3):431–434. 10.1155/S016117129100056X
Rassias JM: On approximation of approximately linear mappings by linear mappings. Bulletin des Sciences Mathématiques 1984, 108(4):445–446.
Găvruţa P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. Journal of Mathematical Analysis and Applications 1994, 184(3):431–436. 10.1006/jmaa.1994.1211
Czerwik S: Functional Equations and Inequalities in Several Variables. World Scientific, River Edge, NJ, USA; 2002:x+410.
Eshaghi Gordji M, Karimi T, Kaboli Gharetapeh S: Approximately -Jordan homomorphisms on Banach algebras. Journal of Inequalities and Applications 2009, 2009:-8.
Hyers DH, Isac G, Rassias ThM: Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and Their Applications, 34. Birkhäuser, Boston, Mass, USA; 1998:vi+313.
Jung S-M: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. Hadronic Press, Palm Harbor, Fla, USA; 2001:ix+256.
Najati A, Park C: Fixed points and stability of a generalized quadratic functional equation. Journal of Inequalities and Applications 2009, 2009:-19.
Park C, An JS, Moradlou F: Additive functional inequalities in Banach modules. Journal of Inequalities and Applications 2008, 2008:-10.
Aczél J, Dhombres J: Functional Equations in Several Variables, Encyclopedia of Mathematics and Its Applications. Volume 31. Cambridge University Press, Cambridge, UK; 1989:xiv+462.
Hyers DH, Rassias ThM: Approximate homomorphisms. Aequationes Mathematicae 1992, 44(2–3):125–153. 10.1007/BF01830975
Skof F: Local properties and approximation of operators. Rendiconti del Seminario Matematico e Fisico di Milano 1983, 53: 113–129. 10.1007/BF02924890
Czerwik S: On the stability of the quadratic mapping in normed spaces. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1992, 62: 59–64. 10.1007/BF02941618
Borelli C, Forti GL: On a general Hyers-Ulam stability result. International Journal of Mathematics and Mathematical Sciences 1995, 18(2):229–236. 10.1155/S0161171295000287
Bouikhalene B, Elqorachi E, Rassias JM: The superstability of d'Alembert's functional equation on the Heisenberg group. Applied Mathematics Letters 2010, 23(1):105–109. 10.1016/j.aml.2009.08.013
Cao H-X, Lv J-R, Rassias JM: Superstability for generalized module left derivations and generalized module derivations on a Banach module. I. Journal of Inequalities and Applications 2009, 2009:-10.
Gilányi A: On the stability of monomial functional equations. Publicationes Mathematicae Debrecen 2000, 56(1–2):201–212.
Eshaghi Gordji M, Abbaszadeh S, Park C: On the stability of a generalized quadratic and quartic type functional equation in quasi-Banach spaces. Journal of Inequalities and Applications 2009, 2009:-26.
Kim H-M, Rassias JM, Cho Y-S: Stability problem of Ulam for Euler-Lagrange quadratic mappings. Journal of Inequalities and Applications 2007, 2007:-15.
Rassias JM, Kim H-M: Generalized Hyers-Ulam stability for general additive functional equations in quasi--normed spaces. Journal of Mathematical Analysis and Applications 2009, 356(1):302–309. 10.1016/j.jmaa.2009.03.005
Savadkouhi MB, Eshaghi Gordji M, Rassias JM, Ghobadipour N: Approximate ternary Jordan derivations on Banach ternary algebras. Journal of Mathematical Physics 2009, 50(4):-9.
Isac G, Rassias ThM: Stability of -additive mappings: applications to nonlinear analysis. International Journal of Mathematics and Mathematical Sciences 1996, 19(2):219–228. 10.1155/S0161171296000324
Radu V: The fixed point alternative and the stability of functional equations. Fixed Point Theory 2003, 4(1):91–96.
Cădariu L, Radu V: Fixed points and the stability of Jensen's functional equation. Journal of Inequalities in Pure and Applied Mathematics 2003, 4(1, article 4):-7.
Cădariu L, Radu V: Fixed point methods for the generalized stability of functional equations in a single variable. Fixed Point Theory and Applications 2008, 2008:-15.
Jung S-M, Kim T-S, Lee K-S: A fixed point approach to the stability of quadratic functional equation. Bulletin of the Korean Mathematical Society 2006, 43(3):531–541.
Jung S-M: A fixed point approach to the stability of isometries. Journal of Mathematical Analysis and Applications 2007, 329(2):879–890. 10.1016/j.jmaa.2006.06.098
Jung S-M: A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory and Applications 2007, 2007:-9.
Jung S-M, Lee Z-H: A fixed point approach to the stability of quadratic functional equation with involution. Fixed Point Theory and Applications 2008, 2008:-11.
Jung S-M, Min S: A fixed point approach to the stability of the functional equation . Fixed Point Theory and Applications 2009, 2009:-8.
Jung S-M, Rassias JM: A fixed point approach to the stability of a functional equation of the spiral of Theodorus. Fixed Point Theory and Applications 2008, 2008:-7.
Diaz JB, Margolis B: A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bulletin of the American Mathematical Society 1968, 74(2):305–309. 10.1090/S0002-9904-1968-11933-0
Hyers DH, Isac G, Rassias ThM: Topics in Nonlinear Analysis and Applications. World Scientific, River Edge, NJ, USA; 1997:xiv+699.
Acknowledgment
This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (no. 2009-0070940).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Son, E., Lee, J. & Kim, HM. Stability of Quadratic Functional Equations via the Fixed Point and Direct Method. J Inequal Appl 2010, 635720 (2010). https://doi.org/10.1155/2010/635720
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/635720
Keywords
- Banach Space
- Functional Equation
- Fixed Point Theorem
- Stability Theorem
- Unbounded Function