- Research Article
- Open Access
- Published:
Asymptotic Behavior of Solutions of a Periodic Diffusion Equation
Journal of Inequalities and Applications volume 2010, Article number: 597569 (2010)
Abstract
We consider a degenerate parabolic equation with logistic periodic sources. First, we establish the existence of nontrivial nonnegative periodic solutions by monotonicity method. Then by using Moser iterative technique and the method of contradiction, we establish the boundedness estimate of nonnegative periodic solutions, by which we show that the attraction of nontrivial nonnegative periodic solutions, that is, all non-trivial nonnegative solutions of the initial boundary value problem, will lie between a minimal and a maximal nonnegative nontrivial periodic solutions, as time tends to infinity.
1. Introduction
In this paper, we consider the following periodic degenerate parabolic equation:



where ,  
is a bounded domain in
with smooth boundary
,  
is a nonnegative bounded smooth function,
and
are positive continuous functions and of
-periodic
with respect to
.
The problem (1.1)–(1.3) describes the evolution of the population density of a species living in a habitat and can be proposed for many problems in mathematical biology and fisheries management. The term
models a tendency to avoid crowding and the reaction term
models the contribution of the population supply due to births and deaths; see [1]. The homogeneous Dirichlet boundary conditions model the inhospitality of the boundary. The time dependence of the coefficients reflects the fact that the time periodic variations of the habitat are taken into account. Reaction diffusion equations with such reaction term can be regarded as generalization of Fisher or Kolomogorv-Petrovsky-Piscunov equations which are used to model the growth of population (see [2, 3]). Especially, when
, the (1.1) is the classical Logistic equation and some related problems have attracted much attention of researchers (see [4–6], etc.).
In the recent years, there are a lot of work dedicated to the existence, uniqueness, regularity, and some other qualitative properties, of weak solutions of this kind of degenerate parabolic equations (see [7–9], etc.). But to our knowledge, there is few work that has been accomplished in the literature for periodic degeneracy parabolic equation, and most of the known results so far only concerned with the existence of periodic solutions but not consider the attraction (see [10, 11], etc.). So our work is not a simple extension to the previous work.
The purpose of this paper is to investigate the asymptotic behavior of nontrivial nonnegative solutions of the initial boundary value problem (1.1)–(1.3). Since the equation has periodic sources, it is of no meaning to consider the steady state. So we have to seek some new approaches. Our idea is to consider all nonnegative periodic solutions. We first establish the existence of nontrivial nonnegative periodic solutions by monotone iterative method. Then we establish the a priori upper bound and a priori lower bound
according to the maximum norm for all nontrivial nonnegative periodic solutions. By which we obtain asymptotic behavior of nontrivial nonnegative solutions of the problem (1.1)–(1.3). That is all nontrivial nonnegative solutions will lie between a minimal and a maximal nonnegative nontrivial periodic solutions, as time tends to infinity.
The paper is organized as follows. In Section 2, we introduce some necessary preliminaries. In Section 3, we establish the existence of nontrivial nonnegative periodic solutions by monotonicity method. In Section 4, we show the asymptotic behavior of nontrivial nonnegative solutions of (1.1)–(1.3).
2. Preliminaries
In this section, we present the definitions of weak solutions and some useful principles.
Since (1.1) is degenerate at points where , problem (1.1)–(1.3) might not have classical solutions in general. Therefore, we focus our main efforts on the discussion of weak solutions in the sense of the following.
Definition 2.1.
A nonnegative function is called to be a weak solution of problem (1.1)–(1.3) in
, if
and
satisfies

for any test functions with
, where
denotes the set of functions which are continuous in
and of
-periodic with respect to
.
A supersolution (resp., a subsolution
) is defined in the same way except that the "
" in (2.1) is replaced by "
" ("
") and
is taken to be nonnegative.
Definition 2.2.
A function is called to be a
periodic solution of problem (1.1)-(1.2) if it is a solution such that
. A function
is called to be a
periodic subsolution if it is a subsolution such that
in
. A function
is called to be a
periodic supersolution if it is a supersolution such that
in
. A pair of
periodic supersolution
and subsolution
is called to be ordered if
in
.
Several properties of solutions of problem (1.1)–(1.3) are needed in this paper. We first show the comparison principle.
Lemma 2.3 (comparison).
Assume , if
is a subsolution of (1.1)–(1.3) corresponding to the initial datum
, and
is a supersolution of (1.1)–(1.3) corresponding to the initial datum
, then
.
Proof.
Without loss of generality, we might assume that are bounded. From Definition 2.1, we have

with nonnegative test function and
. Subtracting the above inequalities, we get

where

Since ,
and
are bounded on
, it follows from
that
is a bounded nonnegative function. Thus, by choosing appropriate test function
exactly as [12, Pages 118–123], we obtain

where and
is a bounded constant. Since
, combining with the Gronwall's lemma, we see that
a.e. in
for any
. The proof is completed.
Lemma 2.4 (global existence).
For any nonnegative bounded initial value , problem (1.1)–(1.3) admits a global nonnegative solution.
Proof.
Local existence can be proved as [13]. Global existence and nonnegativity follow from Lemma 2.3 by standard arguments.
Lemma 2.5 (regularity [7]).
Let be a weak solution of problem (1.1)–(1.3), then there exist positive constants
and
, such that

for every pair of points .
3. Existence of Periodic Solutions
In this section, we show the existence of nontrivial nonnegative periodic solutions of the problem (1.1)-(1.2) by monotonicity method. First, we introduce the following remark.
Remark 3.1 (see [14]).
According to Lemmas 2.3–2.5, the semiflow associated with the solution of problem (1.1)–(1.3), namely, the map

has the following properties:
(i) is well defined for any
(Lemma 2.3);
(ii) is order preserving (Lemma 2.4);
(iii) is compact. In fact, the family
  
is uniformly bounded in
by Lemma 2.3. Then by Lemma 2.5, the set
consists of equicontinuous functions, thus the conclusion follows from Ascoli-Arzelà 's theorem.
Theorem 3.2.
If problem (1.1)-(1.2) admits a pair of ordered nontrivial nonnegative periodic subsolution
and
periodic supersolution
, then problem (1.1)-(1.2) admits a nontrivial nonnegative periodic solutions.
Proof.
From Remark 3.1, we just need to construct a pair of ordered periodic subsolution and
periodic supersolution. The existence of nontrivial nonnegative periodic solutions of problem (1.1)-(1.2) will come from the similar iteration procedure as that in [15].
Let be the first eigenvalue and its corresponding eigenfunction to the Laplacian operator
on the domain
the first eigenvalue and its corresponding eigenfunction to the Laplacian operator
on some domain
, with respect to homogeneous Dirichlet data, respectively. It is clear that
for all
. Denote

and define

where

Clearly, and
are the
-periodic subsolution and supersolution of (1.1) subject to the condition (1.2), respectively. Further, we may assume
, else we may change
and then
appropriately. Thus we complete the proof.
4. Asymptotic Behavior
In this section, we show the asymptotic behavior of nontrivial nonnegative solutions of the initial boundary value problem. First, we employ Moser's technique to obtain the upper bound of norm for a nonnegative periodic solution
.
Lemma 4.1.
Let be a nontrivial nonnegative periodic solution of (1.1)-(1.2), then there exists a positive constant
which is independent of
, such that

where .
Proof.
Let be a nontrivial nonnegative periodic solution of (1.1)-(1.2), multiply the (1.1) by
and integrate the resulting relation over
, we have

where . Hence

where denotes various positive constants independent of
and
. Set

from (4.3) we have

Here we appeal to the Gagliardo-Nirenberg inequality

with

where denotes a positive constant independent of
and
. From (4.5), (4.6), and the fact that
, we have

with . Taking the periodicity of
into account, we can obtain

where . From the boundedness of
and
, we can see that

where is a positive constant independent of
. Noticing that
implies

with , we get

where . That is

and thus

or

where

Letting , we get

Now we estimate . Set
in (4.3), we get

By Hölder's inequality and Sobolev's theorem, we have

From (4.18), (4.19) we can obtain

By Young's inequality, we get

where denotes different positive constants independent of
. By (4.21) and the periodicity of
, we have

Together with (4.17), we complete the proof of this lemma.
Lemma 4.2.
There exists a constant with
, such that no nontrivial nonnegative periodic solutions
of problem (1.1)-(1.2) satisfies

Proof.
To arrive at a contradiction, we assume that problem (1.1)-(1.2) admits a nontrivial nonnegative periodic solution satisfying
. For any given
, we can choose
as a test function. Multiplying (1.1) by
and integrating over
, we obtain

By the periodicity of , the first term of the left-hand side in (4.24) satisfies

The second term of the left-hand side in (4.24) can be rewritten as

Thus

Combining (4.24) with (4.25) and (4.27), we obtain

By an approximating process, we can choose with
is the first eigenvalue and
is its corresponding eigenfunction to the eigenvalue problem

Then and
is strictly positive in
. From (4.28) we have

Thus there exists such that
, then

Obviously, we can choose suitable small , such that for any
, the above inequality does not hold. It is a contradiction. The proof is completed.
In the following, we will make use of the a priori boundedness of all nontrivial nonnegative periodic solutions to show the asymptotic behavior of nontrivial nonnegative solutions of the initial boundary value problem (1.1)–(1.3).
Theorem 4.3.
Problem (1.1)-(1.2) admits a minimal and a maximal nonnegative nontrivial periodic solutions and
. Moreover, if
is the solution of the initial boundary value problem (1.1)–(1.3) with initial value
, then for any
, there exists
depending on
and
, such that

Proof.
First, we show the existence of the maximal periodic solution . Define a Poincaré map

where is the solution of (1.1)–(1.3) with initial value
. By Remark 3.1, the map
is well defined. Let
be the solution of (1.1)–(1.3) with initial value
, where
and
is a positive constant satisfying

where are chosen as those in Theorem 3.2. It is observed that
,
, and
by the comparison principle. By a rather standard argument, we conclude that there exist a function
and a subsequence of
, denoted by itself for simplicity, such that

Similar to the proof of Theorem in [4], we can prove that
, which is the even extension of the solution of the initial boundary value problem (1.1)–(1.3) with initial value
, is a periodic solution of the problem (1.1)-(1.2). Moreover, Lemma 4.1 shows that any nonnegative periodic solution
of (1.1)-(1.2) must satisfy
for
. Therefore, if we take
is larger than
by the comparison principle we have
and thus
, which means that
is the maximal periodic solution of problem (1.1)-(1.2). The existence of the minimal periodic solution can be obtained with the same method.
Let be the solution of the initial boundary value problem (1.1)–(1.3) with any given nonnegative initial value
, and let
be the solution of (1.1)–(1.3) with initial value
, where
is a positive constant satisfying

then for any , we have

A similar argument as [4] shows that , and
is a nontrivial nonnegative periodic solution of (1.1)-(1.2). Therefore, there exists
such that

for any and
. Provided that the periods of
and
are taken into account, for any
, there exists
depending on
and
such that

By the similar way and Lemma 4.2, we can obtain

Thus we complete the proof.
References
Okubo A: Diffusion and Ecological Problems: Mathematical Models, Biomathematics. Volume 10. Springer, Berlin, Germany; 1980:xiii+254.
Fisher RA: The advance of advantageous genes. Annals of Eugenics 1937, 7: 355–369. 10.1111/j.1469-1809.1937.tb02153.x
Holmes EE, Lewis MA, Banks JE, Veit RR: Partial differential equations in ecology: spatial interactions and population dynamics. Ecology 1994, 75(1):17–29. 10.2307/1939378
Amann H: Periodic solutions of semilinear parabolic equations. In Nonlinear Analysis (Collection of Papers in Honor of Erich H. Röthe). Academic Press, New York, NY, USA; 1978:1–29.
Hess P: On the asymptotically periodic Fisher equation. In Progress in Partial Differential Equations: Elliptic and Parabolic Problems (Pont-à -Mousson, 1991), Pitman Research Notes in Mathematics Series. Volume 266. Longman Science and Technology, Harlow, UK; 1992:24–33.
Ahmad S, Lazer AC: Asymptotic behaviour of solutions of periodic competition diffusion system. Nonlinear Analysis: Theory, Methods & Applications 1989, 13(3):263–284. 10.1016/0362-546X(89)90054-0
DiBenedetto E: Continuity of weak solutions to a general porous medium equation. Indiana University Mathematics Journal 1983, 32(1):83–118. 10.1512/iumj.1983.32.32008
Pop IS, Sepúlveda M, Radu FA, Vera Villagrán OP: Error estimates for the finite volume discretization for the porous medium equation. Journal of Computational and Applied Mathematics. In press
Ma L, Zhao L, Song X: Gradient estimate for the degenerate parabolic equation on manifolds. Journal of Differential Equations 2008, 244(5):1157–1177. 10.1016/j.jde.2007.08.014
Huang R, Wang Y, Ke Y: Existence of non-trivial nonnegative periodic solutions for a class of degenerate parabolic equations with nonlocal terms. Discrete and Continuous Dynamical Systems. Series B 2005, 5(4):1005–1014.
Ke Y, Huang R, Sun J: Periodic solutions for a degenerate parabolic equation. Applied Mathematics Letters 2009, 22(6):910–915. 10.1016/j.aml.2008.06.047
Anderson JR: Local existence and uniqueness of solutions of degenerate parabolic equations. Communications in Partial Differential Equations 1991, 16(1):105–143. 10.1080/03605309108820753
Wu ZQ, Zhao JN, Yin JX, Li HL: Nonlinear Diffusion Equation. Singapore World Science and Technology Press, Singapore; 2001.
Hess P, Pozio MA, Tesei A: Time periodic solutions for a class of degenerate parabolic problems. Houston Journal of Mathematics 1995, 21(2):367–394.
Tesei A: Time periodic solutions of a degenerate parabolic problem. In Current Problems of Analysis and Mathematical Physics. Università degli Studi di Roma "La Sapienza", Rome, Italy; 1993:239–250.
Acknowledgments
The authors express their thanks to the referees for their very helpful suggestions to improve some results in this paper. This work is supported by NSFH (A200909), NSFC (10801061), and Project (HIT. NSRIF. 2009049). It was also supported by the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Sun, J., Wu, B. & Zhang, D. Asymptotic Behavior of Solutions of a Periodic Diffusion Equation. J Inequal Appl 2010, 597569 (2010). https://doi.org/10.1155/2010/597569
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/597569
Keywords
- Periodic Solution
- Weak Solution
- Global Existence
- Diffusion Equation
- Initial Boundary