- Research Article
- Open Access
- Published:
On Nonhomogeneous
-Harmonic Equations and 1-Harmonic Equations
Journal of Inequalities and Applications volume 2010, Article number: 346308 (2010)
Abstract
We prove a characterization of a nonhomogeneous A-harmonic equation and describe its generalization. We also point out its connection with 1-Harmonic equation.
1. Introduction
Both A-harmonic equations and -harmonic geometry are rich subjects [1–5]. Many results on both topics have been derived, respectively, but there are very few papers relating both subjects. In this paper, we will connect these two subjects by extending several results from 1-Harmonic functions to A-Harmonic functions.
We consider the following setting: a function
is said to be A-harmonic if it is a weak solution of A-harmonic equation

where is the length of the gradient
of
, and for a
function
without a critical point,
is said to be the 1-tension field of
.
Let be an open subset of
. Consider the following second-order divergence-type elliptic equation:

where x
satisfies
(i),
(ii),
where are two fixed constants, and
is called a weight if
and
a.e. Also, in general
where
is a weight.
In this paper, we characterize subsolutions of (1.1) and indicate its generalization to (1.2). We first recall some results in homogeneous A-harmonic equations in the following section, followed by the main results in Section 3. Some open problems are discussed in the last section.
2. Homogeneous
-Harmonic Equations
Definition.
A function ,
is called a very weak solution of (1.2) if

for all with compact support.
It was shown in [4] that very weak solutions of (1.2) in fact weak solutions of (1.2) in the usual sense.
Definition 2.2.
an
-harmonic tensor in
of
satisfies the
-harmonic equation (2.1) in
.
Consider the space of differential -forms
being an A-harmonic tensor in a domain
, and
Assume that
, and
for some
. Then the following local weighted Poincare inequality for A-harmonic tensors was proved in [3]. There exists a constant
independent of
such that

for all balls with
, where the measure
is defined by
, and
is the ball with the same center as
and with
.
3. Characterizations of Nonhomogeneous
-Harmonic Equations
In what follows, we prove an A-harmonic analog of 1-harmonic equations.
Lemma 3.1.
Let M be a complete noncompact Riemannian. For any and any pair of positive numbers
with
, there exist a rotational symmetric Lipschitz continuous function
and a constant
(independent of
) with the following properties:
(i) on B(
; s) and
off B (
; s),
(ii), a.e. on M.
Proof.
See Andreotti and Vesentini [6], Yau [7], and Karp [8].
Theorem 3.2.
Let be a domain in
containing a ball
of radius
, centered at
, and let
be a continuous function with
, and

Let be a
weak solution of

then the infimum c satisfies , where k only depends on
, and
.
Proof.
Let be as in Lemma 3.1, and
. Choose
to be a test function. Then by Cauchy-Schwarz inequality, we have

Hence, .
Where only depends on
and
.
Corollary 3.3.
Let be a
weak subsolution of
-harmonic equation (1.1) with constant 1-tension field
, that is,
in the distribution sense. Then
is an A-harmonic function.
Remark.
In a similar fashion, the above results can be extended to the nonhomogeneous equation by using Sobolev Imbedding Theorem.
4. Further Discussions
It would be interesting to find similar results of Section 2 for nonhomogeneous -harmonic equations. It would also be interesting to seek analogs of 1-harmonic applications in calibration geometry. The extension of 1-harmonic functions to
-harmonic functions on hyperbolic spaces and their associated spaces could be explored.
To conclude this paper, we state another -harmonic extension of 1-harmonic result [5], that is an immediate consequence of Corollary 3.3.
Theorem.
Let , and
for every x in
. The following statements are equivalent.
(i) is a
weak subsolution of (1.1) with constant 1-tension field.
(ii) is a
weak solution of (1.1) on
.
(iii) is a
A-harmonic function on
.
References
Agarwal RP, Ding S: Advances in differential forms and the A -harmonic equation. Mathematical and Computer Modelling 2003, 37(12–13):1393–1426. 10.1016/S0895-7177(03)90049-5
Ding S: Integral estimates for the Laplace-Beltrami and Green's operators applied to differential forms on manifolds. Zeitschrift für Analysis und ihre Anwendungen 2003, 22(4):939–957.
Ding S, Liu B: Generalized Poincaré inequalities for solutions to the A -harmonic equation in certain domains. Journal of Mathematical Analysis and Applications 2000, 252(2):538–548. 10.1006/jmaa.2000.6951
Gao H-Y, Zhang Y, Chu Y-M: Regularity for very weak solutions of -harmonic equation with weight. Kyungpook Mathematical Journal 2009, 49(2):195–202.
Wei SW: On 1-harmonic functions. Symmetry, Integrability and Geometry: Methods and Applications 2007, 3: 127–136.
Andreotti A, Vesentini E: Carleman estimates for the Laplace-Beltrami equation on complex manifolds. Institut des Hautes Études Scientifiques. Publications Mathématiques 1965, (25):81–130.
Yau ST: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana University Mathematics Journal 1976, 25(7):659–670. 10.1512/iumj.1976.25.25051
Karp L: Subharmonic functions on real and complex manifolds. Mathematische Zeitschrift 1982, 179(4):535–554. 10.1007/BF01215065
Acknowledgments
The author wishes to express sincere gratitude to Professor S. Walter Wei for many helpful suggestions and encouragements without which this would have not been written.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Lin, EB. On Nonhomogeneous -Harmonic Equations and 1-Harmonic Equations.
J Inequal Appl 2010, 346308 (2010). https://doi.org/10.1155/2010/346308
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/346308
Keywords
- Continuous Function
- Weak Solution
- Open Problem
- Usual Sense
- Harmonic Extension