- Research Article
- Open Access
- Published:
Slow Growth for Universal Harmonic Functions
Journal of Inequalities and Applications volume 2010, Article number: 253690 (2010)
Abstract
Given any continuous increasing function such that
, we show that there are harmonic functions
on
satisfying the inequality
for every
, which are universal with respect to translations. This answers positively a problem of D. H. Armitage (2005). The proof combines techniques of Dynamical Systems and Operator Theory, and it does not need any result from Harmonic Analysis.
1. Introduction
A classic result of Birkhoff from 1929 [1] says that there are entire functions whose translates approximate any other entire function as accurately as we want on an arbitrary compact set of the complex plane. More precisely, given any entire function
, there exists an increasing sequence
of integers such that
, uniformly on compact sets of
. Then
is called a universal entire function (with respect to translation). In terms of Dynamical Systems, the (continuous and linear) operator
,
admits elements
whose orbit
is dense in
. Within the framework of Operator Theory,
is called a hypercyclic operator, and
is a hypercyclic vector for
. The same phenomenon happens for any translation operator
with respect to a nonzero
.
A harmonic function on
is said to be universal with respect to translations if the set of translates
is dense in the space of all harmonic functions on
with the topology of local uniform convergence, that is, the topology of uniform convergence on compact subsets of
, also called compact-open topology. Dzagnidze [2] showed that there are universal harmonic functions on
(see also the recent paper [3] where it is shown that there are harmonic functions which are universal in a stronger sense, which depends on how "frequently" certain orbits visit any neighbourhood). One may think that the growth of a universal function cannot be arbitrarily "controlled" from above by certain prescribed growth. This is certainly the case for polynomial growth since polynomial growth (either in the entire or in the harmonic case) implies that the function is a polynomial and, obviously, the translation of a polynomial is another polynomial of the same degree. But it came as a surprise that if we fix any transcendental growth, one can find universal entire functions that grow more slowly [4, 5]. In the harmonic case, Armitage [6] showed that universal harmonic functions can also have slow growth. More precisely, given any
, a continuous increasing function such that

then there is a universal harmonic function on
that satisfies
for all
. Armitage [6] asked whether the condition (1.1) can be relaxed: is it true that, for every
, one can find universal harmonic functions on
with arbitrarily slow transcendental growth? In other words, can the exponent
of
be reduced to
? We answer positively this question. It is easy to notice that
is equivalent to saying that
for all
, and no universal harmonic function
can satisfy that
for any
, since this would force
to be a polynomial. This is why we can only consider transcendental growths for universal harmonic functions. Let us recall that the case
can be obtained as a consequence of the result in [4, 5] (as was noticed in [6]) since, for example, the real part of a universal entire function is a universal harmonic function on
.
We will recall some notions. For the basic theory of harmonic functions we refer the reader to the books [7, 8]. For a good source on the theory of hypercyclic operators and related properties, we refer the reader to [9–12].
A continuous function on a metric space
is topologically transitive (resp., mixing) if, for any pair
of nonempty open sets, there is
(resp.,
) such that
(resp., for every
). We will work with (continuous and linear) operators
on separable, metric, and complete topological vector spaces
. In our framework it is well known that topological transitivity is equivalent to hypercyclicity.
2. Universal Harmonic Functions of Slow Growth and Strong Approximation of Polynomials
Given a transcendental growth determined by , to find universal harmonic functions
whose growth is bounded by
(i.e.,
for all
), it suffices to find a Banach space
consisting of harmonic functions, whose topology is finer than the topology of uniform convergence on compact sets of
, containing the harmonic polynomials, and such that, on the one hand, the translation operator
,
, is (well-defined, continuous and) hypercyclic for every
, and on the other hand every harmonic function in the unit ball of
has a growth bounded by
. Indeed, in this case, there are functions
in the unit ball of
whose orbit under
is dense in
, therefore every harmonic polynomial can be approximated in the topology of
by a (multiple of a fixed
) translation of
, and we obtain that the harmonic functions can be approximated, uniformly on compact sets of
, by translations of
.
Theorem 2.1.
Let be a continuous increasing function such that

Then there is a Banach space of harmonic functions, whose topology is finer than the topology of uniform convergence on compact sets of
, containing the harmonic polynomials, such that the translation operator
is a (well-defined and bounded) mixing operator, for any
, and every
with
satisfies
for all
.
In particular, there are universal harmonic functions of arbitrarily slow transcendental growth.
Proof.
Let us first consider the case . We fix
, and by
we denote the corresponding directional derivative operator (
,
). Since
commutes with the Laplacian, one can easily construct a basis
of the harmonic polynomials such that each
is
-homogeneous with
,
, and
for every
. To illustrate a particular case, for instance, let
and
. A construction of a basis of harmonic polynomials with the above conditions is

Note that the polynomials constructed above are all homogeneous, and we wrote the part of the basis until degree .
We consider a sequence of positive weights such that
and
,
. Let us define the space of harmonic functions of growth controlled by
as

The space is continuously included in the space of all harmonic functions on
under the compact-open topology. Indeed, if
,
,
, and
, then

It is clear that if we select the sequence increasing fast enough, we have that every
with
satisfies that
for all
. To prove it, let
. Our hypothesis on
implies that

because each is a polynomial. Let
so that
if
,
. We suppose that

Given any and
with
, we have

We have that is a bounded operator which acts as

since ,
.
The space is naturally isomorphic to
, where
and
,
. Via the natural isomorphism, the operator
is then conjugated to the following operator on
which is the
-sum of the backward shift
:

We fix the notation . Since the translation operator
equals
, we thus have that
is conjugated to
. Then we are done if we prove that
is a mixing operator on
.
Given arbitrary nonempty open sets , we fix
and pairs
of nonempty open sets in the corresponding spaces,
, such that

The operator is mixing on any weighted
-space, as was shown in the proof of Theorem
of [13]; therefore we find
such that
,
, for every
. We finally conclude that

and , being conjugated to
, is a mixing operator.
The case is even simpler since the basis of harmonic polynomials can be taken as
such that
and
for every
,
. The corresponding space
is the direct sum of two weighted
-spaces, and a simplification of the above argument does the job.
Remark 2.2.
What we actually showed in the proof of Theorem 2.1 is that there are with
for all
such that, for any harmonic polynomial
, there is an increasing sequence
of integers such that
in the topology of
, which is finer than the topology of uniform convergence on compact sets of
. Moreover, the function
is universal with respect to translations in the direction of
, a result also stronger than Armitage's in the sense that in [6] all translations were allowed for a universal function.
3. Final Comments
It is possible to obtain the main result of the paper by using tensor product techniques developed in [14]. However the proofs seem to be technically much more complicated since one has to represent the space of harmonic functions on as a quotient of a direct sum of the complete tensor product of spaces of harmonic functions with fewer variables, while we produced here a, somehow, direct proof. We want to thank Antonio Bonilla for pointing out to us the possibility of a tensor product approach.
When we fix a nonzero , one can consider the parametric family of translation operators
on our space
. This is a
-semigroup of operators, which we showed to be hypercyclic on
. We refer to [12, 13] for the basic theory of hypercyclic
-semigroups. In [15] we proved that every hypercyclic vector of a
-semigroup is shared by all operators of the semigroup (except, obviously,
). In particular, if
is a universal harmonic function for
, then it is also universal (or a hypercyclic vector) for
for all
. Let us notice that the inheritance of hypercyclicity by discrete subsemigroups depends strongly on the fact that the index set is
or
: there are hypercyclic
-semigroups of operators whose index set is a sector of the complex plane and such that no discrete subsemigroup is hypercyclic [16].
The operator can be considered as a (infinite type) differential operator since
. In [17] we develop techniques based on a kind of generalized backward shifts which allow us to extend the main results in this paper and [5] to other differential operators, and then we show the existence of harmonic and entire functions of arbitrarily slow transcendental growth which are universal with respect to some differential operators.
References
Birkhoff GD: Démonstration d'un théorème élémentaire sur les fonctions entières. Comptes Rendus de l'Académie des sciences 1929, 189: 473–475.
Dzagnidze OP: On universal double series. Sakharthvelos SSR Mecnierebatha Akademiis Moambe 1964, 34: 525–528.
Blasco O, Bonilla A, Grosse-Erdmann K-G: Rate of growth of frequently hypercyclic functions. Proceedings of the Edinburgh Mathematical Society. Series II 2010, 53(1):39–59. 10.1017/S0013091508000564
Duĭos Ruis SM: Universal functions and the structure of the space of entire functions. Doklady Akademii Nauk SSSR 1984, 279(4):792–795. English translation Soviet Mathematics—Doklady, vol. 30, pp. 713–716, 1984 English translation Soviet Mathematics—Doklady, vol. 30, pp. 713-716, 1984
Chan KC, Shapiro JH: The cyclic behavior of translation operators on Hilbert spaces of entire functions. Indiana University Mathematics Journal 1991, 40(4):1421–1449. 10.1512/iumj.1991.40.40064
Armitage DH: Permissible growth rates for Birkhoff type universal harmonic functions. Journal of Approximation Theory 2005, 136(2):230–243. 10.1016/j.jat.2005.07.006
Axler S, Bourdon P, Ramey W: Harmonic Function Theory, Graduate Texts in Mathematics. Volume 137. Second edition. Springer, New York, NY, USA; 2001:xii+259.
Gardiner SJ: Harmonic Approximation, London Mathematical Society Lecture Note Series. Volume 221. Cambridge University Press, Cambridge, UK; 1995:xiv+132.
Grosse-Erdmann K-G: Universal families and hypercyclic operators. Bulletin of the American Mathematical Society 1999, 36(3):345–381. 10.1090/S0273-0979-99-00788-0
Grosse-Erdmann K-G: Recent developments in hypercyclicity. RACSAM. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 2003, 97(2):273–286.
Bayart F, Matheron É: Dynamics of Linear Operators, Cambridge Tracts in Mathematics. Volume 179. Cambridge University Press, Cambridge; 2009:xiv+337.
Grosse-Erdmann KG, Peris A: Linear Chaos, Universitext. Springer, New York, NY, USA; 2010.
Desch W, Schappacher W, Webb GF: Hypercyclic and chaotic semigroups of linear operators. Ergodic Theory and Dynamical Systems 1997, 17(4):793–819. 10.1017/S0143385797084976
Martínez-Giménez F, Peris A: Universality and chaos for tensor products of operators. Journal of Approximation Theory 2003, 124(1):7–24. 10.1016/S0021-9045(03)00118-7
Conejero JA, Müller V, Peris A: Hypercyclic behaviour of operators in a hypercyclic -semigroup. Journal of Functional Analysis 2007, 244(1):342–348. 10.1016/j.jfa.2006.12.008
Conejero JA, Peris A: Hypercyclic translation -semigroups on complex sectors. Discrete and Continuous Dynamical Systems. Series A 2009, 25(4):1195–1208.
Martínez-Giménez F, Peris A: Hypercyclic differential operators on spaces of entire and harmonic functions. , Preprint , Preprint
Acknowledgments
This work was partially supported by the MEC and FEDER Projects MTM2007-64222, MTM2010-14909, and MTM2007-62643. The third author was also supported by Generalitat Valenciana, Project PROMETEO/2008/101. The authors would like to thank the referees, whose reports produced a great improvement of the paper's presentation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Gómez-Collado, M., Martínez-Giménez, F., Peris, A. et al. Slow Growth for Universal Harmonic Functions. J Inequal Appl 2010, 253690 (2010). https://doi.org/10.1155/2010/253690
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/253690
Keywords
- Differential Operator
- Harmonic Function
- Entire Function
- Uniform Convergence
- Polynomial Growth