- Research Article
- Open Access
- Published:
A-Harmonic Equations and the Dirac Operator
Journal of Inequalities and Applications volume 2010, Article number: 124018 (2010)
Abstract
We show how -harmonic equations arise as components of Dirac systems. We generalize
-harmonic equations to
-Dirac equations. Removability theorems are proved for solutions to
-Dirac equations.
1. Introduction
This paper explains how -harmonic equations arise from Dirac systems. Indeed the main purpose of this paper is to elucidate the connection between the theories of
-harmonic functions and Dirac analysis. An
-harmonic equation
is a component of a Dirac system

This component is the scalar (real) part of the Dirac system, under appropriate identifications. Hence any real-valued solution to the Dirac system is an -harmonic function. As such, the class of
-harmonic functions which are also solutions of the Dirac system are a special class of
-harmonic functions. See Section 3 for a detailed discussion. As an application, we show that a result concerning removable singularities for
-harmonic functions satisfying a Lipschitz condition or of bounded mean oscillation extends to Clifford valued solutions to corresponding Dirac equations. The result also holds for functions of a certain order of growth. This seems to be new even in the case of an
-harmonic function.
In Section 2, we present preliminaries about Clifford algebra along with definitions and notations. In Section 3, we introduce -Dirac equations and show the correspondence with
-harmonic equations. The Caccioppoli estimate for solutions to
-Dirac equations appears in Section 4 and the removability theorems are in Section 5 along with references. For other recent work on nonlinear Dirac equations, see [1–6].
2. Preliminaries
We write for the real universal Clifford algebra over
The Clifford algebra is generated over
by the basis of reduced products

where is an orthonormal basis of
with the relation
We write
for the identity. The dimension of
is
. We have an increasing tower
The Clifford algebra
is a graded algebra as
, where
are those elements whose reduced Clifford products have length
For ,
denotes the scalar part of
, that is, the coefficient of the element
.
Throughout, is a connected and open set with boundary
. A Clifford-valued function
can be written as
where each
is real-valued and
are reduced products. The norm used here is given by
This norm is submultiplicative,
.
The Dirac operator used here is as follows:

Also Here
is the Laplace operator which operates only on coefficients. A function is monogenic when
Throughout, is a cube in
with volume
. We write
for the cube with the same center as
and with sidelength
times that of
. For
, we write
for the space of Clifford-valued functions in
whose coefficients belong to the usual
space. Also,
is the space of Clifford valued functions in
whose coefficients as well as their first distributional derivatives are in
. We also write
for
, where the intersection is over all
compactly contained in
We similarly write
Moreover, we write
for the space of monogenic functions in
Furthermore, we define the Dirac Sobolev space

The local space is similarly defined. Notice that if
is monogenic, then
if and only if
Also it is immediate that
3. Correspondence and the
-Dirac Equation
We first define the -harmonic equation. We define operators

Here is measurable for all
, and
is continuous for a.e.
We assume the structure conditions with
:

for some The exponent
will represent this exponent throughout.
An -harmonic function,
, is a weak solution to
, when

for all with compact support.
See [7] for the theory of -harmonic equations.
To connect these equations with Dirac systems, we define the linear isomorphism by

It follows that for a real-valued function , we have
, and for
, we have


Next we define by

In this way, we see that (3.3) is equivalent to

This motivates the following definition for Dirac systems of higher-order Clifford valued functions. We use the Clifford conjugation The product
defines a Clifford-valued inner product.
Moreover, the scalar part of this Clifford inner product is the usual inner product in
,
when
and
are identified as vectors. We continue to use the Clifford notation for this scalar product. This conjugation compensates for the minus sign in (3.5) and in higher-order Clifford products. Moreover, the conjugation can be incorporated into an integration by parts formula.
To this purpose (we are replacing with
for convenience) we recast the structure equations above and define operators:

We assume that preserves the grading of the Clifford algebra. Here
is measurable for all
, and
is continuous for a.e.
We assume the structure conditions with
:


for some
Definition 3.1.
A Clifford valued function , for
is a weak solution to

if for all with compact support we have

Notice that when is the identity, then (3.13) is the Clifford Laplacian. Moreover these equations generalize the important case of the
-Dirac equation:

Here
These equations were introduced and their conformal invariance was studied in [8].
In the case of the -Dirac equation,
, when
, and
,
, are solutions to (3.13). Notice that a monogenic function
is trivially a solution to (3.13) and if
is a solution to (3.13), then so is
for any monogenic function
In the case that is a real-valued function
also implies that

where So in this case (3.13) can be identified with the two equations

Hence when is a function, (3.13) implies that
is a harmonic field and locally there exists a harmonic function
such that
If
is invertible, then
Hence regularity of
implies regularity of the solution
. Notice that if
, then
, where
In general, -harmonic functions do not have such regularity. This suggests the study of the scalar part of the system equation (3.13) in general. Indeed a Caccioppoli estimate holds for solutions to the scalar part of (3.13). This is the topic of the next section.
Hence we see a special class of -harmonic functions, namely, real-valued solutions to the system (3.13). This class should have special properties.
On the other hand, results about -harmonic functions suggest possible properties of general solutions to (3.13). In this paper, we present one such extension, that of removable sets. The essential ingredient in the proof is the Caccioppoli estimate.
4. A Caccioppoli Estimate
Next is a Caccioppoli estimate for solutions to (3.13). This result appears in [9]. We give the short proof here for completeness.
Theorem 4.1.
Let be a solution to scalar part of (3.13) and
,
Then

Proof.
Choose . Then
Hence using (3.13) and (3.10),

Using Hölder's inequality and (3.11), we have

Corollary 4.2.
Suppose that is a solution to (3.13). Let
be a cube with
where
. Then there is a constant
, independent of
, such that

Proof.
Choose ,
,
in
and
.
5. Removability
For monogenic functions with modulus of continuity , sets of
-Hausdorff measure are removable [1]. For Hölder continuous analytic functions, see [10]. Sets satisfying a certain geometric condition related to Minkowski dimension are shown to be removable for
-harmonic functions in Hölder and bounded mean oscillation classes in [11]. In the case of Hölder continuity, this was sharped in [12] to a precise condition for removable sets for
-harmonic functions in terms of Hausdorff dimension.
We show here that sets satisfying a generalized Minkowski-type inequality, similar to that in [11], are removable for solutions to the -Dirac equation which satisfy a certain oscillation condition. The following definition is motivated by the fact that real-valued functions satisfying various regularity properties are characterized by this definition. We explain below.
Definition 5.1.
Assume that ,
and that
We say that is of
-oscillation in
when

The infimum over monogenic functions is natural since they are trivially solutions to an -Dirac equation just as constants are solutions to an
-harmonic equation. If
is a function and
, then (5.1) is equivalent to the usual definition of the bounded mean oscillation when
and (5.1) is equivalent to the usual local Lipschitz condition when
[13]. Moreover, at least when
is a solution to an
-harmonic equation, (5.1) is equivalent to a local order of growth condition when
; see [9, 14]. In these cases, the supremum is finite if we choose
to be the average value of the function
over the cube
. It is easy to see that in condition (5.1) the expansion factor "2" can be replaced by any factor greater than 1.
If the coefficients of an -Dirac solution
are of bounded mean oscillation, local Hölder continuous, or of a certain local order of growth, then
is in an appropriate oscillation class; see [9].
Notice that monogenic functions satisfy (5.1) just as the space of constants is a subspace of the bounded mean oscillation and Lipschitz spaces of real-valued functions.
We remark that it follows from Hölder's inequality that if and if
is of
-oscillation, then
is of
-oscillation.
The following lemma shows that Definition 5.1 is independent of the expansion factor of the cube.
Lemma 5.2.
Suppose that ,
a.e.,
, and
If

then

Proof.
If , then the implication is immediate. Assume
Let
be a cube with
Dyadically subdivide
into a finite number of subcubes
with
Then
for all
. Moreover,

We use a Whitney decomposition of
. The decomposition consists of closed dyadic cubes with disjoint interiors which satisfy
(a)
(b)
(c) when
is not empty.
Here is the Euclidean distance between
and the boundary of
; see [15].
We use the following definition. If and
, then we define the
-inflation of
as

We now state the removability result.
Theorem 5.3.
Let be a relatively closed subset of
. Suppose that
has distributional first derivatives in
,
is a solution to the scalar part of the
-Dirac equation (3.13) in
, and
is of
-oscillation in
. If for each compact subset
of

then extends to a solution of the A-Dirac equation in
.
Proof.
Let be a cube in the Whitney decomposition of
. Using the Caccioppoli estimate and the
-oscillation condition, we have

Here . Since the problem is local (use a partition of unity), we show that (3.13) holds whenever
with
and
sufficiently small. Choose
and let
Then
is a compact subset of
. Also let
be those cubes in the Whitney decomposition of
which meet
Notice that each cube
lies in
Let
First, since
, it follows that
; see [11]. Also since
using (5.6) and (5.7), we obtain

Hence
Next let and assume that
. Also let
be those cubes
with
Consider the scalar functions

Thus each ,
is Lipschitz, equal to
on
and as such
with compact support. Hence

Since is a solution in
,
Also we have

Now there exists a constant such that
Hence using Hölder's inequality,

Next using (4.4), the above is

Now for is bounded above and below by a multiple of
and for
Hence

Since and
as
it follows that
as
Next again using Hölder's inequality,

Since and
as
, we have that
as
Hence
.
References
Abreu-Blaya R, Bory-Reyes J, Peña-Peña D: Jump problem and removable singularities for monogenic functions. The Journal of Geometric Analysis 2007, 17(1):1–13. 10.1007/s00039-006-0585-4
Chen Q, Jost J, Li J, Wang G: Dirac-harmonic maps. Mathematische Zeitschrift 2006, 254(2):409–432. 10.1007/s00209-006-0961-7
Chen Q, Jost J, Li J, Wang G: Regularity theorems and energy identities for Dirac-harmonic maps. Mathematische Zeitschrift 2005, 251(1):61–84. 10.1007/s00209-005-0788-7
Chen Q, Jost J, Wang G: Nonlinear Dirac equations on Riemann surfaces. Annals of Global Analysis and Geometry 2008, 33(3):253–270. 10.1007/s10455-007-9084-6
Wang C: A remark on nonlinear Dirac equations. preprint preprint
Wang C, Xu D: Regularity of Dirac-harmonic maps. International Mathematics Research Notices 2009, (20):3759–3792.
Heinonen J, Kilpeläinen T, Martio O: Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs. Oxford University Press, New York, NY, USA; 1993:vi+363.
Nolder CA, Ryan J: -Dirac operators. Advances in Applied Clifford Algebra 2009, 19(2):391–402. 10.1007/s00006-009-0162-7
Nolder CA: Nonlinear -Dirac equations. to appear in Advances in Applied Clifford Algebra to appear in Advances in Applied Clifford Algebra
Kaufman R, Wu JM: Removable singularities for analytic or subharmonic functions. Arkiv för Matematik 1980, 18(1):107–116. 10.1007/BF02384684
Koskela P, Martio O: Removability theorems for solutions of degenerate elliptic partial differential equations. Arkiv för Matematik 1993, 31(2):339–353. 10.1007/BF02559490
Kilpeläinen T, Zhong X: Removable sets for continuous solutions of quasilinear elliptic equations. Proceedings of the American Mathematical Society 2002, 130(6):1681–1688. 10.1090/S0002-9939-01-06237-2
Meyers NG: Mean oscillation over cubes and Hölder continuity. Proceedings of the American Mathematical Society 1964, 15: 717–721.
Langmeyer N: The quasihyperbolic metric, growth, and John domains. Annales Academiæ Scientiarium Fennicæ. Mathematica 1998, 23(1):205–224.
Stein EM: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, no. 30. Princeton University Press, Princeton, NJ, USA; 1970:xiv+290.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Nolder, C. A-Harmonic Equations and the Dirac Operator. J Inequal Appl 2010, 124018 (2010). https://doi.org/10.1155/2010/124018
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2010/124018
Keywords
- Weak Solution
- Harmonic Function
- Dirac Equation
- Dirac Operator
- Clifford Algebra