- Research Article
- Open Access

# Approximating Curve and Strong Convergence of the *CQ* Algorithm for the Split Feasibility Problem

- Fenghui Wang
^{1, 2}and - Hong-Kun Xu
^{3}Email author

**2010**:102085

https://doi.org/10.1155/2010/102085

© F.Wang and H.-K. Xu. 2010

**Received:**14 December 2009**Accepted:**14 January 2010**Published:**14 February 2010

## Abstract

Using the idea of Tikhonov's regularization, we present properties of the approximating curve for the split feasibility problem (SFP) and obtain the minimum-norm solution of SFP as the strong limit of the approximating curve. It is known that in the infinite-dimensional setting, Byrne's *CQ* algorithm (Byrne, 2002) has only weak convergence. We introduce a modification of Byrne's *CQ* algorithm in such a way that strong convergence is guaranteed and the limit is also the minimum-norm solution of SFP.

## Keywords

- Minimization Problem
- Weak Convergence
- Nonexpansive Mapping
- Strong Convergence
- Bounded Linear Operator

## 1. Introduction

Let and be nonempty closed convex subsets of real Hilbert spaces and , respectively. The problem under consideration in this article is formulated as finding a point satisfying the property:

where is a bounded linear operator. Problem (1.1), referred to by Censor and Elfving [1] as the split feasibility problem (SFP), attracts many authors' attention due to its application in signal processing [1]. Various algorithms have been invented to solve it (see [2–7] and reference therein).

In particular, Byrne [2] introduced the so-called algorithm. Take an initial guess arbitrarily, and define recursively as

where and where denotes the projector onto and is the spectral radius of the self-adjoint operator Then the sequence generated by (1.2) converges strongly to a solution of SFP whenever is finite-dimensional and whenever there exists a solution to SFP (1.1).

However, the algorithm need not necessarily converge strongly in the case when is infinite dimensional. Let us mention that the algorithm can be regarded as a special case of the well-known Krasnosel'skii-Mann algorithm for approximating fixed points of nonexpansive mappings [3]. This iterative method is introduced in [8] and defined as follows. Take an initial guess arbitrarily, and define recursively as

where satisfying If is nonexpansive with a nonempty fixed point set, then the sequence generated by (1.3) converges weakly to a fixed point of . It is known that Krasnosel'skii-Mann algorithm is in general not strongly convergent (see [9, 10] for counterexamples) and neither is the algorithm.

It is therefore the aim of this paper to construct a new algorithm so that strong convergence is guaranteed. The paper is organized as follows. In the next section, some useful lemmas are given. In Section 3, we define the concept of the minimal norm solution of SFP (1.1). Using Tikhonov's regularization, we obtain a continuous curve for approximating such minimal norm solution. Together with some properties of this approximating curve, we introduce, in Section 4, a modification of Byrne's algorithm so that strong convergence is guaranteed and its limit is the minimum-norm solution of SFP (1.1).

## 2. Preliminaries

Throughout the rest of this paper, denotes the identity operator on , the set of the fixed points of an operator and the gradient of the functional The notation " " denotes strong convergence and " " weak convergence.

Recall that an operator from into itself is called nonexpansive if

contractive if there exists such that

monotone if

Obviously, contractions are nonexpansive, and if is nonexpansive, then is monotone (see [11]).

Let denote the projection from onto a nonempty closed convex subset of ; that is,

It is well known that is characterized by the inequality

Consequently, is nonexpansive.

The lemma below is referred to as the demiclosedness principle for nonexpansive mappings (see [12]).

Lemma 2.1 (demiclosedness principle).

Let be a nonempty closed convex subset of and a nonexpansive mapping with If is a sequence in weakly converging to and if the sequence converges strongly to , then In particular, if , then .

Let be a a functional. Recall that

(ii) is strictly convex if the strict less than inequality in (2.6) holds for all distinct .

(iv) is coercive if whenever It is easily seen that if is strongly convex, then it is coercive. See [13] for more details about convex functions.

The following lemma gives the optimality condition for the minimizer of a convex functional over a closed convex subset.

Lemma 2.2 (see [14]).

Moreover, if is, in addition, strictly convex and coercive, then problem (2.8) has a unique solution.

The following is a sufficient condition for a real sequence to converge to zero.

Lemma 2.3 (see [15]).

where the sequences and satisfy the conditions:

(1)

(2)

(3)either or

Then .

## 3. Approximating Curves

The convexly constrained linear problem requires to solve the constrained linear system (cf. [16, 17])

where . A classical way to deal with such a possibly ill-posed problem is the well-known Tikhonov regularization, which approximates a solution of problem (3.1) by the unique minimizer of the regularized problem

where is known as the regularization parameter.

We now try to transfer this idea of Tikhonov's regularization method for solving the constrained linear inverse problem (3.1) to the case of SFP (1.1).

It is not hard to find that SFP (1.1) is equivalent to the minimization problem

Motivated by Tikhonov's regularization, we consider the minimization problem

where is the regularization parameter. Denote by the unique solution of (3.4); namely,

Proposition 3.1.

Proof.

Thus, applying Lemma 2.2 gets the assertion (3.6), as desired.

The next result collects some useful properties of .

Proposition 3.2.

The following assertions hold.

(a) is decreasing for .

(b) is increasing for .

(c) defines a continuous curve from to

Proof.

which implies that . Hence (a) holds.

and therefore (b) holds.

Thus (c) holds.

Let , where . In what follows, we assume that that is, the solution set of SFP (1.1) is nonempty. The fact that is nonempty closed convex set thus allows us to introduce the concept of minimum-norm solution of SFP (1.1).

Definition 3.3.

An element is said to be the minimal norm solution of SFP (1.1) if . In other words, is the projection of the origin onto the solution set of SFP (1.1). Thus the minimum-norm solution for SFP (1.1) exists and is unique.

Theorem 3.4.

Let be given as (3.5). Then converges strongly as to the minimum-norm solution of SFP (1.1).

Proof.

and (3.20) is proven.

This shows that is also a point in which assumes minimum norm. Due to uniqueness of minimum-norm element, we must have .

Remark 3.5.

The above argument shows that if the solution set of SFP (1.1) is empty, then the net of norms, , diverges to as .

## 4. A Modified *CQ* Algorithm

It is a standard way to use contractions to approximate nonexpansive mappings. We follow this idea and use contractions to approximate the nonexpansive mapping in order to modify Byrne's algorithm. More precisely, we introduce the following algorithm which is viewed as a modification of Byrne's algorithm. The purpose for such a modification lies in the hope of strong convergence.

Algorithm 4.1.

where is a sequence in such that

(1) ;

(2) ;

(3)either or

Note that a prototype of is for all .

To prove the convergence of algorithm (4.1) (see Theorem 4.3 below), we need a lemma below.

Lemma 4.2.

Set , where with being the spectral radius of the self-adjoint operator

(i) is an averaged mapping; namely, , where is a constant and is a nonexpansive mapping from into itself.

(ii) ; consequently, .

- (i)
That which is averaged is actually proved in [3].

This shows that ; that is, .

Finally, since , and both and are averaged, we have .

Theorem 4.3.

The sequence generated by algorithm (4.1) converges strongly to the minimum-norm solution of SFP (1.1).

Proof.

where is averaged by Lemma 4.2.

In particular, is bounded.

Therefore, the demiclosedness principle (Lemma 2.1) ensures that each weak limit point of is a fixed point of the nonexpansive mapping , that is, a point of the solution set of SFP (1.1).

Now since , (4.23) implies (4.20).

This is (4.21).

We therefore can apply Lemma 2.3 to (4.26) to conclude that . This completes the proof.

## Declarations

### Acknowledgment

H. K. Xu was supported in part by NSC 97-2628-M-110-003-MY3, and by DGES MTM2006-13997-C02-01.

## Authors’ Affiliations

## References

- Censor Y, Elfving T: A multiprojection algorithm using Bregman projections in a product space.
*Numerical Algorithms*1994, 8(2–4):221–239.MATHMathSciNetView ArticleGoogle Scholar - Byrne C: Iterative oblique projection onto convex sets and the split feasibility problem.
*Inverse Problems*2002, 18(2):441–453. 10.1088/0266-5611/18/2/310MATHMathSciNetView ArticleGoogle Scholar - Byrne C: A unified treatment of some iterative algorithms in signal processing and image reconstruction.
*Inverse Problems*2004, 20(1):103–120. 10.1088/0266-5611/20/1/006MATHMathSciNetView ArticleGoogle Scholar - Qu B, Xiu N: A note on the
*CQ*algorithm for the split feasibility problem.*Inverse Problems*2005, 21(5):1655–1665. 10.1088/0266-5611/21/5/009MATHMathSciNetView ArticleGoogle Scholar - Xu H-K: A variable Krasnosel'skiĭ-Mann algorithm and the multiple-set split feasibility problem.
*Inverse Problems*2006, 22(6):2021–2034. 10.1088/0266-5611/22/6/007MATHMathSciNetView ArticleGoogle Scholar - Yang Q: The relaxed
*CQ*algorithm solving the split feasibility problem.*Inverse Problems*2004, 20(4):1261–1266. 10.1088/0266-5611/20/4/014MATHMathSciNetView ArticleGoogle Scholar - Yang Q, Zhao J: Generalized KM theorems and their applications.
*Inverse Problems*2006, 22(3):833–844. 10.1088/0266-5611/22/3/006MathSciNetView ArticleGoogle Scholar - Mann WR: Mean value methods in iteration.
*Proceedings of the American Mathematical Society*1953, 4: 506–510. 10.1090/S0002-9939-1953-0054846-3MATHMathSciNetView ArticleGoogle Scholar - Genel A, Lindenstrauss J: An example concerning fixed points.
*Israel Journal of Mathematics*1975, 22(1):81–86. 10.1007/BF02757276MATHMathSciNetView ArticleGoogle Scholar - Güler O: On the convergence of the proximal point algorithm for convex minimization.
*SIAM Journal on Control and Optimization*1991, 29(2):403–419. 10.1137/0329022MATHMathSciNetView ArticleGoogle Scholar - Alber Y, Ryazantseva I:
*Nonlinear Ill-Posed Problems of Monotone Type*. Springer, Dordrecht, The Netherlands; 2006:xiv+410.MATHGoogle Scholar - Goebel K, Kirk WA:
*Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics*.*Volume 28*. Cambridge University Press, Cambridge, Mass, USA; 1990:viii+244.View ArticleGoogle Scholar - Aubin J-P:
*Optima and Equilibria: An Introduction to Nonlinear Analysis, Graduate Texts in Mathematics*.*Volume 140*. Springer, Berlin, Germany; 1993:xvi+417.Google Scholar - Engl HW, Hanke M, Neubauer A:
*Regularization of Inverse Problems, Mathematics and Its Applications*.*Volume 375*. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1996:viii+321.View ArticleGoogle Scholar - Xu H-K: Iterative algorithms for nonlinear operators.
*Journal of the London Mathematical Society. Second Series*2002, 66(1):240–256. 10.1112/S0024610702003332MATHMathSciNetView ArticleGoogle Scholar - Eicke B: Iteration methods for convexly constrained ill-posed problems in Hilbert space.
*Numerical Functional Analysis and Optimization*1992, 13(5–6):413–429. 10.1080/01630569208816489MATHMathSciNetView ArticleGoogle Scholar - Neubauer A: Tikhonov-regularization of ill-posed linear operator equations on closed convex sets.
*Journal of Approximation Theory*1988, 53(3):304–320. 10.1016/0021-9045(88)90025-1MATHMathSciNetView ArticleGoogle Scholar

## Copyright

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.