- Research Article
- Open Access
- Published:
Integrodifferential Inequality for Stability of Singularly Perturbed Impulsive Delay Integrodifferential Equations
Journal of Inequalities and Applications volume 2009, Article number: 369185 (2009)
Abstract
The exponential stability of singularly perturbed impulsive delay integrodifferential equations (SPIDIDEs) is concerned. By establishing an impulsive delay integrodifferential inequality (IDIDI), some sufficient conditions ensuring the exponentially stable of any solution of SPIDIDEs for sufficiently small are obtained. A numerical example shows the effectiveness of our theoretical results.
1. Introduction
Integrodifferential equations (IDEs) arise from many areas of science (from physics, biology, medicine, etc.), which have extensive scientific backgrounds and realistic mathematical models, and hence have been emerging as an important area of investigation in recent years, see [1–6]. Correspondingly, the stability of impulsive delay integrodifferential equations has been studied quite well, for example, [7–9]. However, besides delay and impulsive effects, singular perturbation likewise exists in a wide models for physiological processes or diseases [10]. And many good results on the stability of singularly perturbed delay differential equations have been reported, see, for example, [11–14]. Therefore, it is necessary to consider delay, impulse and singular perturbation on the stability of integrodifferential equations. However, to the best of our knowledge, there are no results on the problems of the exponential stability of solutions for SPIDIDEs due to some theoretical and technical difficulties. Based on this, this article is devoted to the discussion of this problem.
Applying differential inequalities, in [14–17], authors investigated the stability of impulsive differential equations. In [14], Zhu et al. established a delay differential inequality with impulsive initial conditions and derived some sufficient conditions ensuring the exponential stability of solutions for the singular perturbed impulsive delay differential equations (SPIDDEs). In this paper, we will improve the inequality established in [14] such that it is effective for SPIDIDEs. By establishing an IDIDI, some sufficient conditions ensuring the exponential stability of any solution of SPIDIDEs for sufficiently small are obtained. The results extend and improve the earlier publications, and which will be shown by the Remarks 3.2 and 3.5 provided later. An example is given to illustrate the theory.
2. Preliminaries
Throughout this letter, unless otherwise specified, let be the space of
-dimensional real column vectors and
be the set of
real matrices.
. For
or
,
means that each pair of corresponding elements of
and
satisfies the inequality "
(
)". Especially,
is called a nonnegative matrix if
, and
is called a positive vector if
.

denotes the space of continuous mappings from the topological space to the topological space
. In particular, let
denote the family of all bounded continuous
-valued functions
defined on
with the norm
, where
is Euclidean norm of
.

for exist for
for all but points
, where
is an interval,
and
denote the left limit and right limit of scalar function
, respectively. Especially, let
.
For and
or
, we define

In this paper, we consider a class of SPIDIDEs described by

with the initial conditions

where ,
,
,
,
,
is a small parameter, and
is a strictly increasing sequence such that
.
Definition 2.1.
The solution of (2.2) is said to be exponentially stable for sufficiently small if there exist finite constant vectors
and
, which are independent of
for some
, and a constant
such that
for
and for any initial perturbation satisfying
. Here
is the solution of (2.2) corresponding to the initial condition
.
3. Main Results
In order to prove the main result in this paper, we first need the following technique lemma.
Lemma 3.1.
Assume that ,
satisfy

where for
and
,
for
,
.
If there exist a positive constant and a positive vector
and two positive diagonal matrices
,
with
such that

Then one has

where the positive constant is defined as

for the given .
Proof.
Note that the result is trivial if . In the following, we assume that
. Denote

then for any given , we have

the first inequality and the second inequality are from (3.2), the last inequality is because ,
,
,
.
We also have

So by (3.6) and (3.7), for any , there is a unique positive
such that

Therefore, from the definition of , one can know that
.
Next, we will show that .
If this is not true, fix satisfying
and
,
, there exist a
and some integer
such that
, where
, such that

Then, we have

this contradiction shows that , so there at least exists a positive constant
such that
, that is, the definition of
for (3.3) is reasonable.
Since is bounded, we always can choose a sufficiently large
such that

In order to prove (3.3), we first prove for any given ,

If (3.12) is not true, then by continuity of , there must exist some integer
and
such that


So, by (3.1), the equality of (3.13), (3.14) and and
,
, for
, and the definition of
, we derive that

which contradicts the inequality in (3.13), and so (3.12) holds for all . Letting
, then (3.3) holds, and the proof is completed.
Remark 3.2.
If in Lemma 3.1, then we get [14, Lemma  1].
Theorem 3.3.
Assume that for
and
, further suppose the following
For any , there exist nonnegative matrices
and
,
, such that

For any ,there exist nonnegative constant matrices
such that

There exist a positive constant and a positive vector
and two positive diagonal matrices
,
, with
,
such that

where ,
.
There exists a positive constant satisfying

where satisfy

and is defined as

for the given .
Then there exists a small such that the solution of (2.2) is exponentially stable for sufficiently small
.
Proof.
By a similar argument with (3.4), one can know that the defined by (3.21) is reasonable. For any
, let
,
be two solutions of (2.2) through
,
, respectively. Since
are bounded, we can always choose a positive vector
such that

Calculating the upper right derivative along the solution of (2.2), by condition
, we have

From condition , we have

Therefore, (3.23) and (3.24) imply that all the assumptions of Lemma 3.1 are true. So we have

where is determined by (3.21) and the positive constant vector
is determined by (3.18).
Using the discrete part of (2.2), condition , (3.20) and (3.25), we can obtain that

and so, we have

By a similar argument with (3.25), we can use (3.27) derive that

Therefore, by simple induction, we have

From (3.19) and (3.29), we obtain

For any , let
be defined as the unique positive zero of

Differentiate both sides of (3.31) with respect to the variable , we have

so is monotonically decreasing with respect to the variable
, which implies that
is also monotonically decreasing with respect to the variable
. So we can choose the
in (3.21) satisfying the same monotonicity with
, for example,
, where
. Hence we can deduce that there exists a small
such that the solution of (2.2) is exponentially stable for sufficiently small
. The proof is completed.
Remark 3.4.
Suppose that in Theorem 3.3, then we can easily get [14, Theorem  1]. In fact, "
" of condition
in [14, Theorem  1] ensure that the above (3.20) holds.
Remark 3.5.
If ,
, that is there have no impulses in (2.2), then by Theorem 3.3, we can obtain the following result.
Corollary 3.6.
Assume that for
and
,
, further suppose that
and
hold. Then there exists a small
such that the solution of (2.2) is exponentially stable for sufficiently small
.
Remark 3.7.
From Lemma 3.1 and the proof of Theorem 3.3, it is obvious that the results obtained in this paper still hold for . So this type of exponential stability can obviously be applied to general impulsive delay integrodifferential equations.
Remark 3.8.
When and
, the global exponential stability criteria for (2.2) have been established in [18] by utilizing the Lyapunov functional method. However, the additional assumption that
is bounded is required in [18].
4. An Illustrative Example
In this section, we will give an example to illustrate the exponential stability of (2.2).
Example 4.1.
Consider the following SPIDIDEs:

where ,
are constants,
,
,
,
.
We can easily find that conditions and
are satisfied with

So there exist ,
,
and
such that

Let , we can obtain
satisfy
.
Case 1.
Let ,
,
,
, then we obtain that there exists an
such that

and for , the positive constant
is determined by the following equations:

So for a given , we can obtain the corresponding
by (4.5). By the proof of Theorem 3.3, we know that
is monotonically decreasing with respect to the variable
, then there exists an
such that for any
, we have
. Therefore, all the conditions of Theorem 3.3 are satisfied, we conclude that the solution of (4.1) is exponentially stable for sufficiently small
.
Case 2.
Let and
, then (4.1) becomes the singularly perturbed delay integrodifferential equations without impulses. So by Corollary 3.6, the solution of (4.1) is exponentially stable for sufficiently small
.
Remark 4.2.
Obviously, the delay differential inequality which established in [14] is ineffective for studing the stability of SPIDIDEs (4.1).
References
Hale J: Theory of Functional Differential Equations, Applied Mathematical Sciences. 2nd edition. Springer, New York, NY, USA; 1977:x+365.
Gopalsamy K: Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and Its Applications. Volume 74. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1992:xii+501.
Kolmanovskii VB, Myshkis A: Applied Theory of Functional Differential Equations. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1992.
Gan S: Dissipativity of -methods for nonlinear Volterra delay-integro-differential equations. Journal of Computational and Applied Mathematics 2007,206(2):898–907. 10.1016/j.cam.2006.08.030
Alsaedi A, Ahmad B: Existence and analytic approximation of solutions of duffing type nonlinear integro-differential equation with integral boundary conditions. Journal of Inequalities and Applications 2009, 2009:-19.
Brown BM, Kirby VG: A computational investigation of an integro-differential inequality with periodic potential. Journal of Inequalities and Applications 2000,5(4):321–342.
Xu L, Xu D: Exponential stability of nonlinear impulsive neutral integro-differential equations. Nonlinear Analysis: Theory, Methods & Applications 2008,69(9):2910–2923. 10.1016/j.na.2007.08.062
Akhmetov MU, Zafer A, Sejilova RD: The control of boundary value problems for quasilinear impulsive integro-differential equations. Nonlinear Analysis: Theory, Methods & Applications 2002,48(2):271–286. 10.1016/S0362-546X(00)00186-3
Nieto JJ, RodrÃguez-López R: New comparison results for impulsive integro-differential equations and applications. Journal of Mathematical Analysis and Applications 2007,328(2):1343–1368. 10.1016/j.jmaa.2006.06.029
Mackey MC, Glass L: Oscillation and chaos in physiological control systems. Science 1977,197(4300):287–289. 10.1126/science.267326
Tian H: The exponential asymptotic stability of singularly perturbed delay differential equations with a bounded lag. Journal of Mathematical Analysis and Applications 2002,270(1):143–149. 10.1016/S0022-247X(02)00056-2
da Cruz JH, Táboas PZ: Periodic solutions and stability for a singularly perturbed linear delay differential equation. Nonlinear Analysis: Theory, Methods & Applications 2007,67(6):1657–1667. 10.1016/j.na.2006.08.004
Liu X, Shen X, Zhang Y: Exponential stability of singularly perturbed systems with time delay. Applicable Analysis 2003,82(2):117–130. 10.1080/0003681031000063775
Zhu W, Xu D, Yang C: Exponential stability of singularly perturbed impulsive delay differential equations. Journal of Mathematical Analysis and Applications 2007,328(2):1161–1172. 10.1016/j.jmaa.2006.05.082
Xu D, Yang Z, Yang Z: Exponential stability of nonlinear impulsive neutral differential equations with delays. Nonlinear Analysis: Theory, Methods & Applications 2007,67(5):1426–1439. 10.1016/j.na.2006.07.043
Guan Z-H: Impulsive inequalities and stability of large scale singular measure differential systems with unbounded delays. Dynamics of Continuous, Discrete and Impulsive Systems for Theory and Applications 1997,3(1):113–130.
Xu D, Yang Z: Impulsive delay differential inequality and stability of neural networks. Journal of Mathematical Analysis and Applications 2005,305(1):107–120. 10.1016/j.jmaa.2004.10.040
Huang Z-T, Yang Q-G, Luo X-S: Exponential stability of impulsive neural networks with time-varying delays. Chaos, Solitons & Fractals 2008,35(4):770–780. 10.1016/j.chaos.2006.05.089
Acknowledgments
The authors would like to thank the editor and the referees for their very helpful suggestions. The work is supported by National Natural Science Foundation of China under Grant 10671133.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
He, D., Xu, L. Integrodifferential Inequality for Stability of Singularly Perturbed Impulsive Delay Integrodifferential Equations. J Inequal Appl 2009, 369185 (2009). https://doi.org/10.1155/2009/369185
Received:
Accepted:
Published:
DOI: https://doi.org/10.1155/2009/369185
Keywords
- Exponential Stability
- Singular Perturbation
- Delay Differential Equation
- Integrodifferential Equation
- Impulsive Effect