- Research Article
- Open Access
- Published:

# Functional Equation and Its Hyers-Ulam Stability

*Journal of Inequalities and Applications*
**volume 2009**, Article number: 181678 (2009)

## Abstract

We solve the functional equation, , and prove its Hyers-Ulam stability in the class of functions , where is a real (or complex) Banach space.

## 1. Introduction

In 1940, Ulam gave a wide-ranging talk before the Mathematics Club of the University of Wisconsin in which he discussed a number of important unsolved problems [1]. Among those was the question concerning the stability of homomorphisms.

Let be a group and let be a metric group with a metric . Given any , does there exist a such that if a function satisfies the inequality for all , then there exists a homomorphism with for all ?

In the following year, Hyers affirmatively answered in his paper [2] the question of Ulam for the case where and are Banach spaces.

Let be a groupoid and let be a groupoid with the metric . The equation of homomorphism

is stable in the Hyers-Ulam sense (or has the Hyers-Ulam stability) if for every there exists an such that for every function satisfying

for all there exists a solution of the equation of homomorphism with

for any (see [3, Definition ]).

This terminology is also applied to the case of other functional equations. It should be remarked that we can find in the books [4–7] a lot of references concerning the stability of functional equations (see also [8–18]).

Throughout this paper, let and be fixed real numbers with and . By and we denote the distinct roots of the equation . More precisely, we set

Moreover, for any , we define

If and are integers, then is called the Lucas sequence of the first kind. It is not difficult to see that

for any integer . For any , stands for the largest integer that does not exceed .

In this paper, we will solve the functional equation

and prove its Hyers-Ulam stability in the class of functions , where is a real (or complex) Banach space.

## 2. General Solution to (1.7)

In this section, let be either a real vector space if or a complex vector space if . In the following theorem, we investigate the general solution of the functional equation (1.7).

Theorem 2.1.

A function is a solution of the functional equation (1.7) if and only if there exists a function such that

Proof.

Since and , it follows from (1.7) that

By the mathematical induction, we can easily verify that

for all and . If we substitute for in (2.3) and divide the resulting equations by , respectively, , and if we substitute for in the resulting equations, then we obtain the equations in (2.3) with in place of , where . Therefore, the equations in (2.3) are true for all and .

We multiply the first and the second equations of (2.3) by and , respectively. If we subtract the first resulting equation from the second one, then we obtain

for any and .

If we put in (2.4), then

for all .

Since and , if we define a function by , then we see that is a function of the form (2.1).

Now, we assume that is a function of the form (2.1), where is an arbitrary function. Then, it follows from (2.1) that

for any . Thus, by (1.6), we obtain

which completes the proof.

Remark 2.2.

It should be remarked that the functional equation (1.7) is a particular case of the linear equation with and . Moreover, a substantial part of proof of Theorem 2.1 can be derived from theorems presented in the books [19, 20]. However, the theorems in [19, 20] deal with solutions of the linear equation under some regularity conditions, for example, the continuity, convexity, differentiability, analyticity and so on, while Theorem 2.1 deals with the general solution of (1.7) without regularity conditions.

## 3. Hyers-Ulam Stability of (1.7)

In this section, we denote by and the distinct roots of the equation satisfying and . Moreover, let be either a real Banach space if or a complex Banach space if .

We can prove the Hyers-Ulam stability of the functional equation (1.7) as we see in the following theorem.

Theorem 3.1.

If a function satisfies the inequality

for all and for some , then there exists a unique solution function of the functional equation (1.7) such that

for all .

Proof.

Analogously to the first equation of (2.2), it follows from (3.1) that

for each . If we replace by in the last inequality, then we have

and further

for all and . By (3.5), we obviously have

for and .

For any , (3.5) implies that the sequence is a Cauchy sequence (note that .) Therefore, we can define a function by

since is complete. In view of the previous definition of , we obtain

for all , since . If goes to infinity, then (3.6) yields that

for every .

On the other hand, it also follows from (3.1) that

(see the second equation in (2.2)). Analogously to (3.5), replacing by in the previous inequality and then dividing by both sides of the resulting inequality, then we have

for all and . By using (3.11), we further obtain

for and .

On account of (3.11), we see that the sequence is a Cauchy sequence for any fixed (note that .) Hence, we can define a function by

Using the previous definition of , we get

for any . If we let go to infinity, then it follows from (3.12) that

for .

By (3.9) and (3.15), we have

for all . We now define a function by

for all . Then, it follows from (3.8) and (3.14) that

for each ; that is, is a solution of (1.7). Moreover, by (3.16), we obtain the inequality (3.2).

Now, it only remains to prove the uniqueness of . Assume that are solutions of (1.7) and that there exist positive constants and with

for all . According to Theorem 2.1, there exist functions such that

for any , since and are solutions of (1.7).

Fix a with . It then follows from (3.19) and (3.20) that

for each , that is,

for every . Dividing both sides by yields that

and by letting , we obtain

Analogously, if we divide both sides of (3.22) by and let , then we get

By (3.24) and (3.25), we have

Because (where both and are nonzero and so ), it should hold that

for any , that is, for all . Therefore, we conclude that for any . (The presented proof of uniqueness of is somewhat long and involved. Indeed, the referee has remarked that the uniqueness can be obtained directly from [21, Proposition ].)

Remark 3.2.

The functional equation (1.7) is a particular case of the linear equations of higher orders and the Hyers-Ulam stability of the linear equations has been proved in [21, Theorem ]. Indeed, Brzdęk et al. have proved an interesting theorem, from which the following corollary follows (see also [22, 23]):

Corollary 3.3.

Let a function satisfy the inequality (3.1) for all and for some and let be the distinct roots of the equation . If , and , then there exists a solution function of (1.7) such that

for all .

If either and or and , then

Hence, the estimation (3.2) of Theorem 3.1 is better in these cases than the estimation (3.28).

Remark 3.4.

As we know, is the Fibonacci sequence. So if we set and in Theorems 2.1 and 3.1, then we obtain the same results as in [24, Theorems , , and ].

## References

Ulam SM:

*A Collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, no. 8*. Interscience, New York, NY, USA; 1960:xiii+150.Hyers DH:

**On the stability of the linear functional equation.***Proceedings of the National Academy of Sciences of the United States of America*1941,**27:**222–224. 10.1073/pnas.27.4.222Moszner Z:

**On the stability of functional equations.***Aequationes Mathematicae*2009,**77**(1–2):33–88. 10.1007/s00010-008-2945-7Czerwik S:

*Functional Equations and Inequalities in Several Variables*. World Scientific, River Edge, NJ, USA; 2002:x+410.Czerwik S:

*Stability of Functional Equations of Ulam-Hyers-Rassias Type*. Hadronic Press, Palm Harbor, Fla, USA; 2003.Hyers DH, Isac G, Rassias ThM:

*Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and Their Applications, 34*. Birkhäuser Boston, Boston, Mass, USA; 1998:vi+313.Jung S-M:

*Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis*. Hadronic Press, Palm Harbor, Fla, USA; 2001:ix+256.Baker J, Lawrence J, Zorzitto F:

**The stability of the equation**.*Proceedings of the American Mathematical Society*1979,**74**(2):242–246.Forti GL:

**Hyers-Ulam stability of functional equations in several variables.***Aequationes Mathematicae*1995,**50**(1–2):143–190. 10.1007/BF01831117Gajda Z:

**On stability of additive mappings.***International Journal of Mathematics and Mathematical Sciences*1991,**14**(3):431–434. 10.1155/S016117129100056XGăvruţa P:

**A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings.***Journal of Mathematical Analysis and Applications*1994,**184**(3):431–436. 10.1006/jmaa.1994.1211Ger R, Šemrl P:

**The stability of the exponential equation.***Proceedings of the American Mathematical Society*1996,**124**(3):779–787. 10.1090/S0002-9939-96-03031-6Hyers DH, Rassias ThM:

**Approximate homomorphisms.***Aequationes Mathematicae*1992,**44**(2–3):125–153. 10.1007/BF01830975Jung S-M:

**Hyers-Ulam-Rassias stability of functional equations.***Dynamic Systems and Applications*1997,**6**(4):541–565.Rassias ThM:

**On the stability of the linear mapping in Banach spaces.***Proceedings of the American Mathematical Society*1978,**72**(2):297–300. 10.1090/S0002-9939-1978-0507327-1Rassias ThM:

**On the stability of functional equations and a problem of Ulam.***Acta Applicandae Mathematicae*2000,**62**(1):23–130. 10.1023/A:1006499223572Rassias ThM:

**On the stability of functional equations in Banach spaces.***Journal of Mathematical Analysis and Applications*2000,**251**(1):264–284. 10.1006/jmaa.2000.7046Székelyhidi L:

**On a theorem of Baker, Lawrence and Zorzitto.***Proceedings of the American Mathematical Society*1982,**84**(1):95–96.Kuczma M:

*Functional Eequations in a Single Variable, Monografie Matematyczne*.*Volume 46*. PWN—Polish Scientific Publishers, Warsaw, Poland; 1968:383 pp..Kuczma M, Choczewski B, Ger R:

*Iterative Functional Equations, Encyclopedia of Mathematics and Its Applications*.*Volume 32*. Cambridge University Press, Cambridge, UK; 1990:xx+552.Brzdęk J, Popa D, Xu B:

**Hyers-Ulam stability for linear equations of higher orders.***Acta Mathematica Hungarica*2008,**120**(1–2):1–8. 10.1007/s10474-007-7069-3Brzdęk J, Popa D, Xu B:

**Note on nonstability of the linear recurrence.***Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg*2006,**76:**183–189. 10.1007/BF02960864Trif T:

**Hyers-Ulam-Rassias stability of a linear functional equation with constant coefficients.***Nonlinear Functional Analysis and Applications*2006,**11**(5):881–889.Jung S-M:

**Hyers-Ulam stability of Fibonacci functional equation.***Bulletin of the Iranian Mathematical Society*, In press Bulletin of the Iranian Mathematical Society, In press

## Acknowledgments

The author would like to express his cordial thanks to the referee for useful remarks which have improved the first version of this paper. This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (no. 2009-0071206).

## Author information

### Affiliations

### Corresponding author

## Rights and permissions

**Open Access** This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

## About this article

### Cite this article

Jung, SM. Functional Equation and Its Hyers-Ulam Stability.
*J Inequal Appl* **2009, **181678 (2009). https://doi.org/10.1155/2009/181678

Received:

Revised:

Accepted:

Published:

DOI: https://doi.org/10.1155/2009/181678

### Keywords

- Vector Space
- Linear Equation
- General Solution
- Functional Equation
- Regularity Condition