Skip to main content

A Cohen-Type Inequality for Jacobi-Sobolev Expansions


Let be the Jacobi measure supported on the interval [-1, 1]. Let us introduce the Sobolev-type inner product, where. In this paper we prove a Cohen-type inequality for the Fourier expansion in terms of the orthonormal polynomials associated with the above Sobolev inner product. We follow Dreseler and Soardi (1982) and Markett (1983) papers, where such inequalities were proved for classical orthogonal expansions.



  1. Alfaro M, Marcellán F, Rezola ML: Estimates for Jacobi-Sobolev type orthogonal polynomials. Applicable Analysis 1997,67(1–2):157–174.

    Article  MathSciNet  MATH  Google Scholar 

  2. Rocha IA, Marcellán F, Salto L: Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product. Journal of Approximation Theory 2003,121(2):336–356. 10.1016/S0021-9045(03)00035-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Zygmund A: Trigonometric Series. Volumes I and II. Cambridge University Press, London, UK; 1968:Vol. I. xiv+383; Vol. II: vii+364.

    Google Scholar 

  4. Szegő G: Orthogonal Polynomials, American Mathematical Society Colloquium Publications. Volume 23. American Mathematical Society, Providence, RI, USA; 1975.

    Google Scholar 

  5. Markett C: Cohen type inequalities for Jacobi, Laguerre and Hermite expansions. SIAM Journal on Mathematical Analysis 1983,14(4):819–833. 10.1137/0514063

    Article  MathSciNet  MATH  Google Scholar 

  6. Fejzullahu BXh: Divergent Cesàro means of Jacobi-Sobolev expansions. to appear in Revista Matemática Complutense.

  7. Erdélyi A, Magnus W, Oberhettinger F, Tricomi FG: Tables of Integral Transforms, Vol. II. McGraw-Hill, New York, NY, USA; 1954:xvi+451.

    MATH  Google Scholar 

  8. Nevai P, Erdélyi T, Magnus AP: Generalized Jacobi weights, Christoffel functions, and Jacobi polynomials. SIAM Journal on Mathematical Analysis 1994,25(2):602–614. 10.1137/S0036141092236863

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bujar Xh Fejzullahu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Fejzullahu, B.X. A Cohen-Type Inequality for Jacobi-Sobolev Expansions. J Inequal Appl 2007, 093815 (2008).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: