Skip to main content

Extinction and Decay Estimates of Solutions for a Class of Porous Medium Equations

Abstract

The extinction phenomenon of solutions for the homogeneous Dirichlet boundary value problem of the porous medium equation, is studied. Sufficient conditions about the extinction and decay estimates of solutions are obtained by using-integral model estimate methods and two crucial lemmas on differential inequality.

[123456789]

References

  1. 1.

    Ferreira R, Vazquez JL: Extinction behaviour for fast diffusion equations with absorption. Nonlinear Analysis: Theory, Methods & Applications 2001,43(8):943–985. 10.1016/S0362-546X(99)00178-9

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Leoni G: A very singular solution for the porous media equation when. Journal of Differential Equations 1996,132(2):353–376. 10.1006/jdeq.1996.0184

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Peletier LA, Zhao JN: Source-type solutions of the porous media equation with absorption: the fast diffusion case. Nonlinear Analysis: Theory, Methods & Applications 1990,14(2):107–121. 10.1016/0362-546X(90)90018-C

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Li Y, Wu J: Extinction for fast diffusion equations with nonlinear sources. Electronic Journal of Differential Equations 2005,2005(23):1–7.

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Anderson JR: Local existence and uniqueness of solutions of degenerate parabolic equations. Communications in Partial Differential Equations 1991,16(1):105–143. 10.1080/03605309108820753

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Anderson JR: Necessary and sufficient conditions for the unique solvability of a nonlinear reaction-diffusion model. Journal of Mathematical Analysis and Applications 1998,228(2):483–494. 10.1006/jmaa.1998.6165

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Chen SL: The extinction behavior of the solutions for a class of reaction-diffusion equations. Applied Mathematics and Mechanics 2001,22(11):1352–1356.

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Chen SL: The extinction behavior of solutions for a reaction-diffusion equation. Journal of Mathematical Research and Exposition 1998,18(4):583–586.

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Liu W: Periodic solutions of evolution-laplacian equations with a nonlinear convection term. International Journal of Mathematics and Mathematical Sciences 2007, 2007: 10 pages.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wenjun Liu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Liu, W., Wang, M. & Wu, B. Extinction and Decay Estimates of Solutions for a Class of Porous Medium Equations. J Inequal Appl 2007, 087650 (2007). https://doi.org/10.1155/2007/87650

Download citation

Keywords

  • Porous Medium
  • Estimate Method
  • Model Estimate
  • Dirichlet Boundary
  • Integral Model
\