Skip to main content

Some Geometric Inequalities in a New Banach Sequence Space

Abstract

The difference sequence space, which is a generalization of the space introduced and studied by Sargent (1960), was defined by Çolak and Et (2005). In this paper we establish some geometric inequalities for this space.

[1234567891011]

References

  1. 1.

    Sargent WLC: Some sequence spaces related to the spaces. Journal of the London Mathematical Society 1960,35(2):161–171. 10.1112/jlms/s1-35.2.161

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Malkowsky E, Mursaleen M: Matrix transformations between FK-spaces and the sequence spaces and. Journal of Mathematical Analysis and Applications 1995,196(2):659–665. 10.1006/jmaa.1995.1432

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Mursaleen M: Some geometric properties of a sequence space related to. Bulletin of the Australian Mathematical Society 2003,67(2):343–347. 10.1017/S0004972700033803

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Tripathy BC, Sen M: On a new class of sequences related to the space. Tamkang Journal of Mathematics 2002,33(2):167–171.

    MathSciNet  MATH  Google Scholar 

  5. 5.

    Çolak R, Et M: On some difference sequence sets and their topological properties. Bulletin of the Malaysian Mathematical Sciences Society 2005,28(2):125–130.

    MathSciNet  MATH  Google Scholar 

  6. 6.

    Et M, Çolak R: On some generalized difference sequence spaces. Soochow Journal of Mathematics 1995,21(4):377–386.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Kı zmaz H: On certain sequence spaces. Canadian Mathematical Bulletin 1981,24(2):169–176. 10.4153/CMB-1981-027-5

    MathSciNet  Article  Google Scholar 

  8. 8.

    Malkowsky E, Mursaleen M, Suantai S: The dual spaces of sets of difference sequences of orderand matrix transformations. Acta Mathematica Sinica 2007,23(3):521–532. 10.1007/s10114-005-0719-x

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Cui Y, Hudzik H: On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces. Acta Scientiarum Mathematicarum 1999,65(1–2):179–187.

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Gurariĭ VI: Differential properties of the convexity moduli of Banach spaces. Matematicheskie Issledovaniya 1967,2(1):141–148.

    MathSciNet  Google Scholar 

  11. 11.

    Sánchez L, Ullán A: Some properties of Gurarii's modulus of convexity. Archiv der Mathematik 1998,71(5):399–406. 10.1007/s000130050283

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M Mursaleen.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Mursaleen, M., Çolak, R. & Et, M. Some Geometric Inequalities in a New Banach Sequence Space. J Inequal Appl 2007, 086757 (2007). https://doi.org/10.1155/2007/86757

Download citation

Keywords

  • Sequence Space
  • Difference Sequence
  • Geometric Inequality
  • Banach Sequence
  • Banach Sequence Space
\