Skip to main content

Some Geometric Inequalities in a New Banach Sequence Space


The difference sequence space, which is a generalization of the space introduced and studied by Sargent (1960), was defined by Çolak and Et (2005). In this paper we establish some geometric inequalities for this space.



  1. Sargent WLC: Some sequence spaces related to the spaces. Journal of the London Mathematical Society 1960,35(2):161–171. 10.1112/jlms/s1-35.2.161

    MathSciNet  Article  MATH  Google Scholar 

  2. Malkowsky E, Mursaleen M: Matrix transformations between FK-spaces and the sequence spaces and. Journal of Mathematical Analysis and Applications 1995,196(2):659–665. 10.1006/jmaa.1995.1432

    MathSciNet  Article  MATH  Google Scholar 

  3. Mursaleen M: Some geometric properties of a sequence space related to. Bulletin of the Australian Mathematical Society 2003,67(2):343–347. 10.1017/S0004972700033803

    MathSciNet  Article  MATH  Google Scholar 

  4. Tripathy BC, Sen M: On a new class of sequences related to the space. Tamkang Journal of Mathematics 2002,33(2):167–171.

    MathSciNet  MATH  Google Scholar 

  5. Çolak R, Et M: On some difference sequence sets and their topological properties. Bulletin of the Malaysian Mathematical Sciences Society 2005,28(2):125–130.

    MathSciNet  MATH  Google Scholar 

  6. Et M, Çolak R: On some generalized difference sequence spaces. Soochow Journal of Mathematics 1995,21(4):377–386.

    MathSciNet  MATH  Google Scholar 

  7. Kı zmaz H: On certain sequence spaces. Canadian Mathematical Bulletin 1981,24(2):169–176. 10.4153/CMB-1981-027-5

    MathSciNet  Article  Google Scholar 

  8. Malkowsky E, Mursaleen M, Suantai S: The dual spaces of sets of difference sequences of orderand matrix transformations. Acta Mathematica Sinica 2007,23(3):521–532. 10.1007/s10114-005-0719-x

    MathSciNet  Article  MATH  Google Scholar 

  9. Cui Y, Hudzik H: On the Banach-Saks and weak Banach-Saks properties of some Banach sequence spaces. Acta Scientiarum Mathematicarum 1999,65(1–2):179–187.

    MathSciNet  MATH  Google Scholar 

  10. Gurariĭ VI: Differential properties of the convexity moduli of Banach spaces. Matematicheskie Issledovaniya 1967,2(1):141–148.

    MathSciNet  Google Scholar 

  11. Sánchez L, Ullán A: Some properties of Gurarii's modulus of convexity. Archiv der Mathematik 1998,71(5):399–406. 10.1007/s000130050283

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to M Mursaleen.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Mursaleen, M., Çolak, R. & Et, M. Some Geometric Inequalities in a New Banach Sequence Space. J Inequal Appl 2007, 086757 (2007).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Sequence Space
  • Difference Sequence
  • Geometric Inequality
  • Banach Sequence
  • Banach Sequence Space