Skip to main content

Stability of Cubic Functional Equation in the Spaces of Generalized Functions

Abstract

In this paper, we reformulate and prove the Hyers-Ulam-Rassias stability theorem of the cubic functional equation for fixed integer with in the spaces of Schwartz tempered distributions and Fourier hyperfunctions.

[12345678910111213141516171819202122]

References

  1. 1.

    Ulam SM: Problems in Modern Mathematics. John Wiley & Sons, New York, NY, USA; 1964:xvii+150. chapter 6 chapter 6

    Google Scholar 

  2. 2.

    Hyers DH: On the stability of the linear functional equation. Proceedings of the National Academy of Sciences of the United States of America 1941,27(4):222–224. 10.1073/pnas.27.4.222

    MathSciNet  Article  Google Scholar 

  3. 3.

    Rassias ThM: On the stability of the linear mapping in Banach spaces. Proceedings of the American Mathematical Society 1978,72(2):297–300. 10.1090/S0002-9939-1978-0507327-1

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Chmieliński J: Stability of the orthogonality preserving property in finite-dimensional inner product spaces. Journal of Mathematical Analysis and Applications 2006,318(2):433–443. 10.1016/j.jmaa.2005.06.016

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Găvruţa P: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. Journal of Mathematical Analysis and Applications 1994,184(3):431–436. 10.1006/jmaa.1994.1211

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Hyers DH, Isac G, Rassias ThM: Stability of Functional Equations in Several Variables, Progress in Nonlinear Differential Equations and Their Applications. Volume 34. Birkhäuser, Boston, Mass, USA; 1998:vi+313.

    Google Scholar 

  7. 7.

    Jun K-W, Kim GH, Lee YW: Stability of generalized gamma and beta functional equations. Aequationes Mathematicae 2000,60(1–2):15–24. 10.1007/s000100050132

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Jung S-M: Hyers-Ulam stability of Butler-Rassias functional equation. Journal of Inequalities and Applications 2005,2005(1):41–47. 10.1155/JIA.2005.41

    Article  MATH  Google Scholar 

  9. 9.

    Miura T, Takahasi S-E, Hirasawa G: Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras. Journal of Inequalities and Applications 2005,2005(4):435–441. 10.1155/JIA.2005.435

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Rassias JM: Solution of the Ulam stability problem for Euler-Lagrange quadratic mappings. Journal of Mathematical Analysis and Applications 1998,220(2):613–639. 10.1006/jmaa.1997.5856

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Rassias ThM: On the stability of functional equations in Banach spaces. Journal of Mathematical Analysis and Applications 2000,251(1):264–284. 10.1006/jmaa.2000.7046

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Rassias ThM: On the stability of functional equations and a problem of Ulam. Acta Applicandae Mathematicae 2000,62(1):23–130. 10.1023/A:1006499223572

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Jun K-W, Kim H-M: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation. Journal of Mathematical Analysis and Applications 2002,274(2):867–878. 10.1016/S0022-247X(02)00415-8

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Jun K-W, Kim H-M, Chang I-S: On the Hyers-Ulam stability of an Euler-Lagrange type cubic functional equation. Journal of Computational Analysis and Applications 2005,7(1):21–33.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Chung J: Stability of functional equations in the spaces of distributions and hyperfunctions. Journal of Mathematical Analysis and Applications 2003,286(1):177–186. 10.1016/S0022-247X(03)00468-2

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Chung J, Chung S-Y, Kim D: The stability of Cauchy equations in the space of Schwartz distributions. Journal of Mathematical Analysis and Applications 2004,295(1):107–114. 10.1016/j.jmaa.2004.03.009

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Hörmander L: The Analysis of Linear Partial Differential Operators. I: Distribution Theory and Fourier Analysis, Grundlehren der Mathematischen Wissenschaften. Volume 256. Springer, Berlin, Germany; 1983:ix+391.

    Google Scholar 

  18. 18.

    Schwartz L: Théorie des Distributions. Hermann, Paris, France; 1966:xiii+420.

    Google Scholar 

  19. 19.

    Chung J, Chung S-Y, Kim D: A characterization for Fourier hyperfunctions. Publications of the Research Institute for Mathematical Sciences 1994,30(2):203–208. 10.2977/prims/1195166129

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Matsuzawa T: A calculus approach to hyperfunctions—III. Nagoya Mathematical Journal 1990, 118: 133–153.

    MathSciNet  MATH  Google Scholar 

  21. 21.

    Kim KW, Chung S-Y, Kim D: Fourier hyperfunctions as the boundary values of smooth solutions of heat equations. Publications of the Research Institute for Mathematical Sciences 1993,29(2):289–300. 10.2977/prims/1195167274

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Jun K-W, Kim H-M: On the stability of Euler-Lagrange type cubic mappings in quasi-Banach spaces. Journal of Mathematical Analysis and Applications 2007,332(2):1335–1350. 10.1016/j.jmaa.2006.11.024

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young-Su Lee.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Lee, YS., Chung, SY. Stability of Cubic Functional Equation in the Spaces of Generalized Functions. J Inequal Appl 2007, 079893 (2007). https://doi.org/10.1155/2007/79893

Download citation

Keywords

  • Generalize Function
  • Functional Equation
  • Stability Theorem
  • Fixed Integer
  • Fourier Hyperfunction
\