Skip to main content

An Inexact Proximal-Type Method for the Generalized Variational Inequality in Banach Spaces

Abstract

We investigate an inexact proximal-type method, applied to the generalized variational inequality problem with maximal monotone operator in reflexive Banach spaces. Solodov and Svaiter (2000) first introduced a new proximal-type method for generating a strongly convergent sequence to the zero of maximal monotone operator in Hilbert spaces, and subsequently Kamimura and Takahashi (2003) extended Solodov and Svaiter algorithm and strong convergence result to the setting of uniformly convex and uniformly smooth Banach spaces. In this paper Kamimura and Takahashi's algorithm is extended to develop a generic inexact proximal point algorithm, and their convergence analysis is extended to develop a generic convergence analysis which unifies a wide class of proximal-type methods applied to finding the zeroes of maximal monotone operators in the setting of Hilbert spaces or Banach spaces.

[1234567891011]

References

  1. Burachik RS, Lopes JO, Svaiter BF: An outer approximation method for the variational inequality problem. SIAM Journal on Control and Optimization 2005,43(6):2071–2088. 10.1137/S0363012902415487

    Article  MathSciNet  MATH  Google Scholar 

  2. Kamimura S, Takahashi W: Strong convergence of a proximal-type algorithm in a Banach space. SIAM Journal on Optimization 2003,13(3):938–945.

    Article  MathSciNet  MATH  Google Scholar 

  3. Solodov MV, Svaiter BF: Forcing strong convergence of proximal point iterations in a Hilbert space. Mathematical Programming 2000,87(1 (A)):189–202.

    MathSciNet  MATH  Google Scholar 

  4. Bruck RE Jr.: An iterative solution of a variational inequality for certain monotone operators in Hilbert space. Bulletin of the American Mathematical Society 1975,81(5):890–892. 10.1090/S0002-9904-1975-13874-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Bruck RE Jr.: Corrigendum: "An iterative solution of a variational inequality for certain monotone operators in Hilbert space". Bulletin of the American Mathematical Society 1976,82(2):353.

    MathSciNet  MATH  Google Scholar 

  6. Iusem AN: On some properties of paramonotone operators. Journal of Convex Analysis 1998,5(2):269–278.

    MathSciNet  MATH  Google Scholar 

  7. Browder FE: Nonlinear operators and nonlinear equations of evolution in Banach spaces. In Nonlinear Functional Analysis (Proc. Sympos. Pure Math., Vol. XVIII, Part 2, Chicago, Ill., 1968). American Mathematical Society, Providence, RI, USA; 1976:1–308.

    Google Scholar 

  8. Karamardian S: Complementarity problems over cones with monotone and pseudomonotone maps. Journal of Optimization Theory and Applications 1976,18(4):445–454. 10.1007/BF00932654

    Article  MathSciNet  MATH  Google Scholar 

  9. Pascali D, Sburlan S: Nonlinear Mappings of Monotone Type. Editura Academiei, Bucharest, Romania; 1978.

    Book  MATH  Google Scholar 

  10. Lions P-L: Une méthode itérative de résolution d'une inéquation variationnelle. Israel Journal of Mathematics 1978,31(2):204–208. 10.1007/BF02760552

    Article  MathSciNet  MATH  Google Scholar 

  11. Rockafellar RT: Characterization of the subdifferentials of convex functions. Pacific Journal of Mathematics 1966, 17: 497–510.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JC Yao.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Ceng, L., Mastroeni, G. & Yao, J. An Inexact Proximal-Type Method for the Generalized Variational Inequality in Banach Spaces. J Inequal Appl 2007, 078124 (2008). https://doi.org/10.1155/2007/78124

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1155/2007/78124

Keywords