Skip to main content

Improvement of Aczél's Inequality and Popoviciu's Inequality

Abstract

We generalize and sharpen Aczél's inequality and Popoviciu's inequality by means of two classical inequalities, a unified improvement of Aczél's inequality and Popoviciu's inequality is given. As application, an integral inequality of Aczél-Popoviciu type is established.

[12345678910111213141516]

References

  1. 1.

    Aczél J: Some general methods in the theory of functional equations in one variable. New applications of functional equations. Uspekhi Matematicheskikh Nauk (N.S.) 1956,11(3(69)):3–68.

    MATH  Google Scholar 

  2. 2.

    Cho YJ, Matić M, Pečarić J: Improvements of some inequalities of Aczél's type. Journal of Mathematical Analysis and Applications 2001,259(1):226–240. 10.1006/jmaa.2000.7423

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Sun X-H: Aczél-Chebyshev type inequality for positive linear functions. Journal of Mathematical Analysis and Applications 2000,245(2):393–403. 10.1006/jmaa.2000.6754

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Losonczi L, Páles Z: Inequalities for indefinite forms. Journal of Mathematical Analysis and Applications 1997,205(1):148–156. 10.1006/jmaa.1996.5188

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Mercer AM: Extensions of Popoviciu's inequality using a general method. Journal of Inequalities in Pure and Applied Mathematics 2003,4(1, Article 11):4 pages.

    Google Scholar 

  6. 6.

    Mascioni V: A note on Aczél type inequalities. Journal of Inequalities in Pure and Applied Mathematics 2002,3(5, Article 69):5 pages.

    MathSciNet  Google Scholar 

  7. 7.

    Dragomir SS, Mond B: Some inequalities of Aczél type for Gramians in inner product spaces. Nonlinear Functional Analysis and Applications 2001,6(3):411–424.

    MathSciNet  MATH  Google Scholar 

  8. 8.

    Bellman R: On an inequality concerning an indefinite form. The American Mathematical Monthly 1956,63(2):108–109. 10.2307/2306434

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Vasić PM, Pečarić JE: On the Jensen inequality for monotone functions. Analele Universităţii din Timişoara. Seria Matematică-Informatică 1979,17(1):95–104.

    MATH  Google Scholar 

  10. 10.

    Kuang JC: Applied Inequalities. 2nd edition. Hunan Education Press, Changsha, China; 1993:xxvi+794.

    Google Scholar 

  11. 11.

    Mitrinović DS, Pečarić JE, Fink AM: Classical and New Inequalities in Analysis. Volume 61. Kluwer Academic Publishers, Dordrecht, The Netherlands; 1993:xviii+740.

    Google Scholar 

  12. 12.

    Popoviciu T: On an inequality. Gazeta Matematica si Fizica. Seria A 1959, 11 (64): 451–461.

    MathSciNet  Google Scholar 

  13. 13.

    Wu S, Debnath L: Generalizations of Aczél's inequality and Popoviciu's inequality. Indian Journal of Pure and Applied Mathematics 2005,36(2):49–62.

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Wu S: A further generalization of Aczél's inequality and Popoviciu's inequality. Mathematical Inequalities and Application 2007.,10(3):

    Google Scholar 

  15. 15.

    Beckenbach EF, Bellman R: Inequalities. Springer, New York, NY, USA; 1983:xi+198.

    Google Scholar 

  16. 16.

    Hardy GH, Littlewood JE, Pólya G: Inequalities. 2nd edition. Cambridge University Press, Cambridge, UK; 1952:xii+324.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shanhe Wu.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Wu, S. Improvement of Aczél's Inequality and Popoviciu's Inequality. J Inequal Appl 2007, 072173 (2007). https://doi.org/10.1155/2007/72173

Download citation

Keywords

  • Integral Inequality
  • Classical Inequality
  • Unify Improvement
\