Skip to content

Advertisement

  • Research Article
  • Open Access

Inequalities in Additive -isometries on Linear -normed Banach Spaces

Journal of Inequalities and Applications20062007:070597

https://doi.org/10.1155/2007/70597

  • Received: 5 December 2005
  • Accepted: 17 October 2006
  • Published:

Abstract

We prove the generalized Hyers-Ulam stability of additive -isometries on linear -normed Banach spaces.

Keywords

  • Banach Space
  • Normed Banach Space

[12345678910111213141516171819202122232425262728]

Authors’ Affiliations

(1)
Department of Mathematics, Hanyang University, Seoul, 133-791, South Korea
(2)
Department of Mathematics, National Technical University of Athens, Zografou Campus, Athens, 15780, Greece

References

  1. Aleksandrov AD: Mappings of families of sets. Soviet Mathematics Doklady 1970, 11: 116–120.MATHGoogle Scholar
  2. Baker JA: Isometries in normed spaces. The American Mathematical Monthly 1971,78(6):655–658. 10.2307/2316577MathSciNetView ArticleMATHGoogle Scholar
  3. Bourgain J: Real isomorphic complex Banach spaces need not be complex isomorphic. Proceedings of the American Mathematical Society 1986,96(2):221–226. 10.1090/S0002-9939-1986-0818448-2MathSciNetView ArticleMATHGoogle Scholar
  4. Chu H-Y, Park C, Park W-G: The Aleksandrov problem in linear 2-normed spaces. Journal of Mathematical Analysis and Applications 2004,289(2):666–672. 10.1016/j.jmaa.2003.09.009MathSciNetView ArticleMATHGoogle Scholar
  5. Dolinar G: Generalized stability of isometries. Journal of Mathematical Analysis and Applications 2000,242(1):39–56. 10.1006/jmaa.1999.6649MathSciNetView ArticleMATHGoogle Scholar
  6. Gevirtz J: Stability of isometries on Banach spaces. Proceedings of the American Mathematical Society 1983,89(4):633–636. 10.1090/S0002-9939-1983-0718987-6MathSciNetView ArticleMATHGoogle Scholar
  7. Gruber PM: Stability of isometries. Transactions of the American Mathematical Society 1978, 245: 263–277.MathSciNetView ArticleMATHGoogle Scholar
  8. Ma Y: The Aleksandrov problem for unit distance preserving mapping. Acta Mathematica Scientia 2000,20(3):359–364.MathSciNetMATHGoogle Scholar
  9. Mazur S, Ulam S: Sur les transformation isometriques d'espaces vectoriels normes. Comptes Rendus de l'Académie des Sciences 1932, 194: 946–948.MATHGoogle Scholar
  10. Mielnik B, Rassias TM: On the Aleksandrov problem of conservative distances. Proceedings of the American Mathematical Society 1992,116(4):1115–1118. 10.1090/S0002-9939-1992-1101989-3MathSciNetView ArticleMATHGoogle Scholar
  11. Rassias TM: Properties of isometric mappings. Journal of Mathematical Analysis and Applications 1999,235(1):108–121. 10.1006/jmaa.1999.6363MathSciNetView ArticleMATHGoogle Scholar
  12. Rassias TM: On the A. D. Aleksandrov problem of conservative distances and the Mazur-Ulam theorem. Nonlinear Analysis. Theory, Methods & Applications 2001,47(4):2597–2608. 10.1016/S0362-546X(01)00381-9MathSciNetView ArticleMATHGoogle Scholar
  13. Rassias TM, Xiang S: On mappings with conservative distances and the Mazur-Ulam theorem. Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika 2000, 11: 1–8 (2001).MathSciNetMATHGoogle Scholar
  14. Xiang S: Mappings of conservative distances and the Mazur-Ulam theorem. Journal of Mathematical Analysis and Applications 2001,254(1):262–274. 10.1006/jmaa.2000.7276MathSciNetView ArticleMATHGoogle Scholar
  15. Rassias TM, Šemrl P: On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings. Proceedings of the American Mathematical Society 1993,118(3):919–925. 10.1090/S0002-9939-1993-1111437-6MathSciNetView ArticleMATHGoogle Scholar
  16. Cho YJ, Lin PCS, Kim SS, Misiak A: Theory of 2-Inner Product Spaces. Nova Science, New York; 2001:xii+330.MATHGoogle Scholar
  17. C. Park and T. M. Rassias, On a generalized Trif ’s mapping in Banach modules over a C*-algebra, Journal of the Korean Mathematical Society 43 (2006), no. 2, 323–356.MathSciNetView ArticleMATHGoogle Scholar
  18. Chu H-Y, Lee K, Park C: On the Aleksandrov problem in linear-normed spaces. Nonlinear Analysis. Theory, Methods & Applications 2004,59(7):1001–1011.MathSciNetMATHGoogle Scholar
  19. Rassias TM: On the stability of the linear mapping in Banach spaces. Proceedings of the American Mathematical Society 1978,72(2):297–300. 10.1090/S0002-9939-1978-0507327-1MathSciNetView ArticleMATHGoogle Scholar
  20. Jun K-W, Bae J-H, Lee Y-H: On the Hyers-Ulam-Rassias stability of an-dimensional Pexiderized quadratic equation. Mathematical Inequalities & Applications 2004,7(1):63–77.MathSciNetView ArticleMATHGoogle Scholar
  21. Jun K-W, Lee Y-H: On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality. Mathematical Inequalities & Applications 2001,4(1):93–118.MathSciNetView ArticleMATHGoogle Scholar
  22. Jung S-M: Hyers-Ulam stability of Butler-Rassias functional equation. Journal of Inequalities and Applications 2005,2005(1):41–47. 10.1155/JIA.2005.41View ArticleMathSciNetMATHGoogle Scholar
  23. Miura T, Takahasi S-E, Hirasawa G: Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras. Journal of Inequalities and Applications 2005,2005(4):435–441. 10.1155/JIA.2005.435MathSciNetView ArticleMATHGoogle Scholar
  24. Rassias TM: On the stability of functional equations in Banach spaces. Journal of Mathematical Analysis and Applications 2000,251(1):264–284. 10.1006/jmaa.2000.7046MathSciNetView ArticleMATHGoogle Scholar
  25. Rassias TM: The problem of S. M. Ulam for approximately multiplicative mappings. Journal of Mathematical Analysis and Applications 2000,246(2):352–378. 10.1006/jmaa.2000.6788MathSciNetView ArticleMATHGoogle Scholar
  26. Rassias TM, Šemrl P: On the Hyers-Ulam stability of linear mappings. Journal of Mathematical Analysis and Applications 1993,173(2):325–338. 10.1006/jmaa.1993.1070MathSciNetView ArticleMATHGoogle Scholar
  27. Trif T: On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions. Journal of Mathematical Analysis and Applications 2002,272(2):604–616. 10.1016/S0022-247X(02)00181-6MathSciNetView ArticleMATHGoogle Scholar
  28. Park C, Rassias TM: On a generalized Trif's mapping in Banach modules over a-algebra. Journal of the Korean Mathematical Society 2006,43(2):323–356.MathSciNetView ArticleMATHGoogle Scholar

Copyright

Advertisement