Skip to main content

Inequalities in Additive-isometries on Linear-normed Banach Spaces

Abstract

We prove the generalized Hyers-Ulam stability of additive-isometries on linear-normed Banach spaces.

[12345678910111213141516171819202122232425262728]

References

  1. 1.

    Aleksandrov AD: Mappings of families of sets. Soviet Mathematics Doklady 1970, 11: 116–120.

    MATH  Google Scholar 

  2. 2.

    Baker JA: Isometries in normed spaces. The American Mathematical Monthly 1971,78(6):655–658. 10.2307/2316577

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bourgain J: Real isomorphic complex Banach spaces need not be complex isomorphic. Proceedings of the American Mathematical Society 1986,96(2):221–226. 10.1090/S0002-9939-1986-0818448-2

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Chu H-Y, Park C, Park W-G: The Aleksandrov problem in linear 2-normed spaces. Journal of Mathematical Analysis and Applications 2004,289(2):666–672. 10.1016/j.jmaa.2003.09.009

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Dolinar G: Generalized stability of isometries. Journal of Mathematical Analysis and Applications 2000,242(1):39–56. 10.1006/jmaa.1999.6649

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Gevirtz J: Stability of isometries on Banach spaces. Proceedings of the American Mathematical Society 1983,89(4):633–636. 10.1090/S0002-9939-1983-0718987-6

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Gruber PM: Stability of isometries. Transactions of the American Mathematical Society 1978, 245: 263–277.

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Ma Y: The Aleksandrov problem for unit distance preserving mapping. Acta Mathematica Scientia 2000,20(3):359–364.

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Mazur S, Ulam S: Sur les transformation isometriques d'espaces vectoriels normes. Comptes Rendus de l'Académie des Sciences 1932, 194: 946–948.

    MATH  Google Scholar 

  10. 10.

    Mielnik B, Rassias TM: On the Aleksandrov problem of conservative distances. Proceedings of the American Mathematical Society 1992,116(4):1115–1118. 10.1090/S0002-9939-1992-1101989-3

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Rassias TM: Properties of isometric mappings. Journal of Mathematical Analysis and Applications 1999,235(1):108–121. 10.1006/jmaa.1999.6363

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Rassias TM: On the A. D. Aleksandrov problem of conservative distances and the Mazur-Ulam theorem. Nonlinear Analysis. Theory, Methods & Applications 2001,47(4):2597–2608. 10.1016/S0362-546X(01)00381-9

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Rassias TM, Xiang S: On mappings with conservative distances and the Mazur-Ulam theorem. Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika 2000, 11: 1–8 (2001).

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Xiang S: Mappings of conservative distances and the Mazur-Ulam theorem. Journal of Mathematical Analysis and Applications 2001,254(1):262–274. 10.1006/jmaa.2000.7276

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Rassias TM, Šemrl P: On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings. Proceedings of the American Mathematical Society 1993,118(3):919–925. 10.1090/S0002-9939-1993-1111437-6

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Cho YJ, Lin PCS, Kim SS, Misiak A: Theory of 2-Inner Product Spaces. Nova Science, New York; 2001:xii+330.

    Google Scholar 

  17. 17.

    C. Park and T. M. Rassias, On a generalized Trif ’s mapping in Banach modules over a C*-algebra, Journal of the Korean Mathematical Society 43 (2006), no. 2, 323–356.

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Chu H-Y, Lee K, Park C: On the Aleksandrov problem in linear-normed spaces. Nonlinear Analysis. Theory, Methods & Applications 2004,59(7):1001–1011.

    MathSciNet  MATH  Google Scholar 

  19. 19.

    Rassias TM: On the stability of the linear mapping in Banach spaces. Proceedings of the American Mathematical Society 1978,72(2):297–300. 10.1090/S0002-9939-1978-0507327-1

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Jun K-W, Bae J-H, Lee Y-H: On the Hyers-Ulam-Rassias stability of an-dimensional Pexiderized quadratic equation. Mathematical Inequalities & Applications 2004,7(1):63–77.

    MathSciNet  Article  MATH  Google Scholar 

  21. 21.

    Jun K-W, Lee Y-H: On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality. Mathematical Inequalities & Applications 2001,4(1):93–118.

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Jung S-M: Hyers-Ulam stability of Butler-Rassias functional equation. Journal of Inequalities and Applications 2005,2005(1):41–47. 10.1155/JIA.2005.41

    Article  MathSciNet  MATH  Google Scholar 

  23. 23.

    Miura T, Takahasi S-E, Hirasawa G: Hyers-Ulam-Rassias stability of Jordan homomorphisms on Banach algebras. Journal of Inequalities and Applications 2005,2005(4):435–441. 10.1155/JIA.2005.435

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    Rassias TM: On the stability of functional equations in Banach spaces. Journal of Mathematical Analysis and Applications 2000,251(1):264–284. 10.1006/jmaa.2000.7046

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Rassias TM: The problem of S. M. Ulam for approximately multiplicative mappings. Journal of Mathematical Analysis and Applications 2000,246(2):352–378. 10.1006/jmaa.2000.6788

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Rassias TM, Šemrl P: On the Hyers-Ulam stability of linear mappings. Journal of Mathematical Analysis and Applications 1993,173(2):325–338. 10.1006/jmaa.1993.1070

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Trif T: On the stability of a functional equation deriving from an inequality of Popoviciu for convex functions. Journal of Mathematical Analysis and Applications 2002,272(2):604–616. 10.1016/S0022-247X(02)00181-6

    MathSciNet  Article  MATH  Google Scholar 

  28. 28.

    Park C, Rassias TM: On a generalized Trif's mapping in Banach modules over a-algebra. Journal of the Korean Mathematical Society 2006,43(2):323–356.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Choonkil Park.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Park, C., Rassias, T.M. Inequalities in Additive-isometries on Linear-normed Banach Spaces. J Inequal Appl 2007, 070597 (2007). https://doi.org/10.1155/2007/70597

Download citation

Keywords

  • Banach Space
  • Normed Banach Space
\