Skip to main content

On Complex Oscillation Property of Solutions for Higher-Order Periodic Differential Equations

Abstract

We investigate properties of the zeros of solutions for higher-order periodic differential equations, and prove that under certain hypotheses, the convergence exponent of zeros of the product of two linearly independent solutions is infinite.

[12345678910111213]

References

  1. 1.

    Bank SB, Laine I: Representations of solutions of periodic second order linear differential equations. Journal für die Reine und Angewandte Mathematik 1983, 344: 1–21.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    Gao S-A: A further result on the complex oscillation theory of periodic second order linear differential equations. Proceedings of the Edinburgh Mathematical Society 1990,33(1):143–158. 10.1017/S0013091500028959

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Bank SB, Langley JK: Oscillation theorems for higher order linear differential equations with entire periodic coefficients. Commentarii Mathematici Universitatis Sancti Pauli 1992,41(1):65–85.

    MathSciNet  MATH  Google Scholar 

  4. 4.

    Hayman WK: Meromorphic Functions, Oxford Mathematical Monographs. Clarendon Press, Oxford, UK; 1964:xiv+191.

    Google Scholar 

  5. 5.

    Yang L: Value Distribution Theory and New Research on It, Monographs in Pure and Applied Mathematics. Science Press, Beijing, China; 1982:iv+330.

    Google Scholar 

  6. 6.

    Gundersen GG: Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. Journal of the London Mathematical Society 1988,37(1):88–104.

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Valiron G: Lectures on the General Theory of Integral Functions. Chelsea, New York, NY, USA; 1949.

    Google Scholar 

  8. 8.

    Chiang Y-M, Gao S-A: On a problem in complex oscillation theory of periodic second order linear differential equations and some related perturbation results. Annales Academiæ Scientiarium Fennicæ. Mathematica 2002,27(2):273–290.

    MathSciNet  MATH  Google Scholar 

  9. 9.

    Ince E: Ordinary Differential Equations. Longmans, London, UK; 1927.

    Google Scholar 

  10. 10.

    Barry PD: On a theorem of Besicovitch. The Quarterly Journal of Mathematics 1963,14(1):293–302. 10.1093/qmath/14.1.293

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Barry PD: Some theorems related to thetheorem. Proceedings of the London Mathematical Society 1970,21(2):334–360. 10.1112/plms/s3-21.2.334

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Gao SA, Chen ZX, Chen TW: The Complex Oscillation Theory of Linear Differential Equations. Middle China University of Technology Press, Wuhan, China; 1998.

    Google Scholar 

  13. 13.

    Hayman WK: Angular value distribution of power series with gaps. Proceedings of the London Mathematical Society 1972, 24: 590–624. 10.1112/plms/s3-24.4.590

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zong-Xuan Chen.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Chen, ZX., Gao, SA. On Complex Oscillation Property of Solutions for Higher-Order Periodic Differential Equations. J Inequal Appl 2007, 058189 (2007). https://doi.org/10.1155/2007/58189

Download citation

Keywords

  • Differential Equation
  • Independent Solution
  • Oscillation Property
  • Complex Oscillation
  • Periodic Differential Equation
\