Skip to main content

Existence and Asymptotic Stability of Solutions for Hyperbolic Differential Inclusions with a Source Term

Abstract

We study the existence of global weak solutions for a hyperbolic differential inclusion with a source term, and then investigate the asymptotic stability of the solutions by using Nakao lemma.

[12345678910111213141516171819]

References

  1. 1.

    Carl S, Heikkilä S: Existence results for nonlocal and nonsmooth hemivariational inequalities. Journal of Inequalities and Applications 2006., 2006:

    Google Scholar 

  2. 2.

    Miettinen M: A parabolic hemivariational inequality. Nonlinear Analysis 1996,26(4):725–734. 10.1016/0362-546X(94)00312-6

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Miettinen M, Panagiotopoulos PD: On parabolic hemivariational inequalities and applications. Nonlinear Analysis 1999,35(7):885–915. 10.1016/S0362-546X(97)00720-7

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Panagiotopoulos PD: Inequality Problems in Mechanics and Applications Convex and Nonconvex Energy Functions. Birkhäuser, Boston, Mass, USA; 1985.

    Google Scholar 

  5. 5.

    Park JY, Kim HM, Park SH: On weak solutions for hyperbolic differential inclusion with discontinuous nonlinearities. Nonlinear Analysis 2003,55(1–2):103–113. 10.1016/S0362-546X(03)00216-5

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Park JY, Park SH: On solutions for a hyperbolic system with differential inclusion and memory source term on the boundary. Nonlinear Analysis 2004,57(3):459–472. 10.1016/j.na.2004.02.024

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Rauch J: Discontinuous semilinear differential equations and multiple valued maps. Proceedings of the American Mathematical Society 1977,64(2):277–282. 10.1090/S0002-9939-1977-0442453-6

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Varga C: Existence and infinitely many solutions for an abstract class of hemivariational inequalities. Journal of Inequalities and Applications 2005,2005(2):89–105. 10.1155/JIA.2005.89

    Article  MATH  Google Scholar 

  9. 9.

    Nakao M: A difference inequality and its application to nonlinear evolution equations. Journal of the Mathematical Society of Japan 1978,30(4):747–762. 10.2969/jmsj/03040747

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Panagiotopoulos PD: Modelling of nonconvex nonsmooth energy problems. Dynamic hemivariational inequalities with impact effects. Journal of Computational and Applied Mathematics 1995,63(1–3):123–138.

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Liu L, Wang M: Global existence and blow-up of solutions for some hyperbolic systems with damping and source terms. Nonlinear Analysis 2006,64(1):69–91. 10.1016/j.na.2005.06.009

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Messaoudi SA: Global existence and nonexistence in a system of Petrovsky. Journal of Mathematical Analysis and Applications 2002,265(2):296–308. 10.1006/jmaa.2001.7697

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    Ono K: On global solutions and blow-up solutions of nonlinear Kirchhoff strings with nonlinear dissipation. Journal of Mathematical Analysis and Applications 1997,216(1):321–342. 10.1006/jmaa.1997.5697

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Park JY, Bae JJ: On existence of solutions of degenerate wave equations with nonlinear damping terms. Journal of the Korean Mathematical Society 1998,35(2):465–490.

    MathSciNet  MATH  Google Scholar 

  15. 15.

    Todorova G: Stable and unstable sets for the Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms. Journal of Mathematical Analysis and Applications 1999,239(2):213–226. 10.1006/jmaa.1999.6528

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Adams RA: Sobolev Spaces, Pure and Applied Mathematics. Volume 65. Academic Press, New York, NY, USA; 1975.

    Google Scholar 

  17. 17.

    Lions JL: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris; 1969.

    Google Scholar 

  18. 18.

    Nakao M: Energy decay for the quasilinear wave equation with viscosity. Mathematische Zeitschrift 1995,219(2):289–299.

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Showalter RE: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs. Volume 49. American Mathematical Society, Providence, RI, USA; 1997.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jong Yeoul Park.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Park, J.Y., Park, S.H. Existence and Asymptotic Stability of Solutions for Hyperbolic Differential Inclusions with a Source Term. J Inequal Appl 2007, 056350 (2007). https://doi.org/10.1155/2007/56350

Download citation

Keywords

  • Weak Solution
  • Source Term
  • Asymptotic Stability
  • Differential Inclusion
  • Global Weak Solution
\